
Balancing between Creativity and Efficiency in
Software Engineering Project Courses

Ruoqing Wang
Technical University of Munich

ruoqing.wang@tum.de

Snezhina Milusheva
Technical University of Munich
snezhina.milusheva@in.tum.de

Stephan Krusche
Technical University of Munich

krusche@in.tum.de

Abstract—Practical software engineering courses incorporate
industrial clients to present a more realistic environment for
the students. Clients introduce problem statements to students
in the predevelopment phase. These documents describe the
project’s vision, scope, requirements, and acceptance criteria.
An unreasonable trade-off between efficiency and creativity
can lead to unfulfilled client expectations or very constrained
creative space for students. In problem statements, a good
balance between freedom and efficiency helps foster such a
creative-friendly environment that facilitates creative thinking
and innovative approaches.

This paper describes a case study in a software engineering
project course among 17 projects (with over 100 students) in
the past two semesters with real industrial clients. We develop
criteria to classify problem statements into three main types.
Innovation and creativity are measured through self-evaluation
surveys and project documentation. The findings show that
a problem statement with a known problem, fewer than 15
requirements, and fewer than 30 constraint word occurrences has
the highest potential to strike the balance to encourage creativity
and achieve project success.

Index Terms—Creativity, Software Engineering, Project
Courses, Problem Statement, Requirements Engineering, Analy-
sis

I. INTRODUCTION

Many studies in software engineering education have shown

that project courses with external industrial clients have a

positive effect on students’ motivation and understanding of

theoretical knowledge [6, 8, 10, 11].
The clients write a document called a problem statement to

introduce the project to students at the beginning of the practi-

cal project course. It contains a problem, visionary scenarios,

functional and non-functional requirements, target environ-

ment, development environment, client acceptance criteria,

deliverables, and schedule. It establishes the first asynchronous

communication between the client and the development team

and is the starting point of the requirements engineering

process. In the absence of proper guidance, problem statements

are likely to cause one of two undesirable situations.
The first situation is focusing too much on the efficiency of

the project and limiting the developers’ freedom and therefore

creativity. There are two possible reasons behind this. One is

that clients clearly know what the product should look like,

and they even have thought of a complete proposed solution,

depriving the creativity of the developers. The other one is

that the product required by the clients is very complex.

In both cases, clients write down a long detailed list of

initial requirements. Due to time pressure’s negative impact

on creative cognition [2], students tend to follow the rules and

satisfy the requirements rather than approach the problem in

a creative way.

The second situation is focusing too much on creativity

which can result in inefficiency. Different from the first situa-

tion, the only demand from clients is for the students to come

up with something new and creative. Even for experienced

developers, it takes a lot of time to brainstorm, discuss, and

finally agree on the vision of the product. Most of the students

who participate in project courses interact for the first time

with a real team project and a real industry client. Therefore,

the time spent on implementation would be limited if too much

time is spent during requirements engineering. This could

result in analysis paralysis and endanger the success of the

project, even if valuable creative ideas are generated.

In the nowadays competitive world, time consumption has a

major impact on the value of creative ideas. However, the idea

of risk-taking and time-consuming has been notably absent in

current creative education areas [18]. Balancing between the

two extremes described in the above paragraph is yet to be

studied.

This paper mainly focuses on creativity and innovation

in software engineering, including two main perspectives:

creative problem solving and creative problem finding [4]. The

value of creative problem solving can be seen as: previously

unsolved problems are solved, the results of existing solutions

are improved, or the existing solution’s efficiency is enhanced.

Creative problem discovery refers to finding a completely new

problem that has not yet been discovered, and solving this new

problem is both valuable and realistic.

The goal of this paper is to investigate combining efficiency

and creativity into requirements engineering:

H1: The amount of requirements affects creativity.
H2: Problem statements with unknown problems allow

for more creative project results.
The paper is structured as follows. Section 2 describes the

related work about the process model, creativity, and require-

ment engineering. Section 3 introduces a way of classifying

problem statements based on the problem, the number of

requirements, and constraints word occurrences. Section 4

explains how to measure and evaluate creativity. Section 5

shows a case study conducted on 17 projects among over one

537

2022 29th Asia-Pacific Software Engineering Conference (APSEC)

2640-0715/22/$31.00 ©2022 IEEE
DOI 10.1109/APSEC57359.2022.00075

hundred students. In the end, Section 6 describes limitations,

and Section 7 summarizes conclusions and recommendations.

II. RELATED WORK

There are many and varied definitions of creativity, depend-

ing on the different focuses. A general definition that has been

cited over 2000 times is that “Creativity is the interaction

among aptitude, process, and the environment by which an

individual or group produces a perceptible product that is both

novel and useful as defined within a social context.” [29]

A more specified definition is described in a 4P innovation

model proposed by Runco [30]. In 4P innovation model, there

are several major approaches leading to creativity: person(or

personality), process, product, and place(or press). One way to

evaluate creativity is through measurements from the perspec-

tive of the above dimensions [18]. Person includes personality,

attitudes, self-concept, and behavior. The process includes

motivation, perception, thinking, learning, and communication.

Press or Place includes the relationship with the environment.

The product includes the idea that is transformed into a

tangible form.

Agile software development process with Unified Process,

Scrum, and their adaptations have been commonly used in

many software engineering project courses [33, 6, 20, 34,

32]. During the first development phase, the identification of

scenarios, functional requirements, and non-functional require-

ments is important.

The problem statement is the first step toward require-

ments elicitation for the development team. We look into two

branches of research on requirements engineering. The first

one is anchored in education and the second one investigates

the creativity aspect. For both areas, we step onto literature

reviews to outline the existing research and missing aspects.

Daun and others [9] review the existing literature on require-

ments engineering education. They summarize the trends in the

field that lean towards including real clients which parallel

with the course we describe in the case study. However,

creativity is not mentioned among the key teaching trends.

Next in order, Lemos and others [27] focus on creativity

in requirements engineering in an industry context. The argu-

ment for fostering creativity during requirements engineering

is strongly supported by the existing literature. The papers

propose various techniques and approaches to requirements

elicitation from the client. The responsibility of gathering and

understanding the requirements lies within the development

team; and then doing that in a creative way. We take a

look at the very initial communication tool - the problem

statement, and how the client plays a significant role in the

predevelopment phase.

One of the biggest challenges for beginner programmers

is to apply basic programming knowledge to practice [26].

For project courses that are focusing on improving students’

practical skills, there already exist many studies discussing

ways to enhance innovation during the process. Decreasing

pressure to succeed in every step has been proven to be helpful

to creativity [23]. Encouraging pair programming [14, 28]

is helpful to motivate students to build closer team bonds,

actively participate in the development and improve imple-

mentation skills. These methods have been widely applied to

various project course teaching.

III. PROBLEM STATEMENT CLASSIFICATION

The classification of problem statements first focuses on the

number of requirements and whether problems are specified.

A problem is defined as a situation with a goal and some

potential obstacles have to be conquered to achieve the goal.

A requirement can be defined as a feature that the system must

realize or a constraint that the system must satisfy so that the

client will accept the system.

There are two different types of requirements in software

engineering: functional requirements, and non-functional re-

quirements. Requirements can be directly proposed and listed

by the clients or elicited from scenarios and use cases [5].

In problem statement template, clients are required to write

down the initial requirements which have been identified as

important to them.

• A known problem with high requirements level.

• A known problem with low requirements level.

• Discover unknown problems in some areas.

Among the above three problem statement types, the first

two types aim at solving an existing and valuable problem

that has been identified by the clients and the last one is about

exploring unknown problems. The difference between the first

two types is the number of requirements. The distribution

of the number of requirements in each document basically

follows a normal distribution. The threshold for classification

is one standard deviation σ bigger than the mean. Therefore,

the majority, around 84%, of the documents, are within the

range smaller than the threshold.

The last type is about finding an unknown and valuable

problem inside the scope and solving that problem. This type

of problem statement is usually about an open topic, for

example, creating an app with creative features that support

electronic automobile driving. In this case, students need to

find a problem that satisfies the client’s request, propose some

creative ideas, and communicate with clients to define the

scenarios and the requirements.

IV. CREATIVITY MEASUREMENT METHODS

Innovation can be measured by combining analysis of

subjective participant perceptions with analysis of objective

documentation products. The measurement method measures

creativity and innovation through the data of the 4P dimensions

at different time periods.

A. Self-evaluation survey from participants

A survey is designed as a subjective way to measure

creativity and innovation in the software engineering practical

course. A questionnaire survey is an effective tool for large-

scale measurement among participants. The respondents of

the questionnaire are selective, that is, the participants of

the course. The questionnaire is highly recommended to be

538

anonymous to eliminate the concerns of some participants

and collect more sufficient and true survey results. For each

option of the single-choice questions, the 5-Point Likert Scale

model [21] is used: It is one of the most reliable ways to

measure a user’s opinions and capture the range of those

opinions.

Questions focused more on participants’ experiences and

self-feelings during the course. Traditional 5L options are:

Strongly disagree; Disagree; Neither agree nor disagree;

Agree; Strongly agree. They are more tended to guide par-

ticipants’ opinions on an issue, which is not appropriate for

questions related to subjective feelings. In order to make it

easier and more accurate for participants to find a suitable

range, the targeted adaptation options are adverbs: Not at all;

Slightly; Moderately; Very; Extremely. In this way, partici-

pants can more intuitively relate their initial responses in the

question context to corresponding options accordingly through

different adverbs, so that the collected information is also more

accurate and valuable.

In the meantime, conditional open questions are introduced

after the participant picks one answer to a single-choice

question. Participants of the survey are encouraged to further

conduct self-analysis and reflect based on intuitive feelings,

and then give feedback in terms of reasons behind such

answers to the instructors. For example, when a participant

expresses a negative opinion on being creative, an optional

open-ended question asking about the reason why he or she

thinks himself or herself is not creative will be added below.

The participant will re-consider the previous answer and find

reasons to support the answer with more details there. The ad-

vantage of this is that more valuable and customized feedback

can be collected based on not undermining the enthusiasm of

users to participate in the questionnaire.

B. Evaluation from documentation

There are several products that should be delivered to clients

at the end of the project. They are a functional application,

presentation slides, and documentation. The documentation

is written by the students as a white book not only to

introduce clients to how to set up and use the application but

also to explain the design and implementation details. The

documentation contains the purpose of the system, user inter-

face, scenarios, system design, future work, and administrator

manual.

By using natural language process analysis on the documen-

tation, the words, and sentences which are related to creativity

and innovation are counted to evaluate product creativity. It

helps to objectively measure the performance and originality

of the system and covers more about the related creative

details. This evaluation method is also especially helpful

when measuring some previous projects where surveys are

impossible to carry out.

V. CASE STUDY

This section describes a case study in a software engineering

practical course. The case study contains 17 projects, over 100

students, and 10 clients in the winter semester of 2021 and the

summer semester of 2022. In this course, students first learn

to master essential knowledge for iOS development and then

are divided into teams to develop mobile applications. The

topics range from medical treatment, smart home devices, and

automotive driving to grocery shopping.

A. Setting

Students are distributed into several teams based on a set

of team composition criteria. The team distribution takes

the number of students and equipment, programming skills,

project interests, and personal factors such as languages,

personality traits, and interests into consideration [12, 35].

Apart from student developers, each team is equipped with a

project leader and a coach at the same time. Together, they

guide the team through the software development process.

The role of the project leader is similar to a product owner

in agile development. The project leader makes sure that the

product development is aligned with the client’s requirements.

Similar to practice from Creativity-Support Learning Envi-

ronment(CSLE) [3], this course does not have teaching roles

who give instructions and knowledge directly. Instead, project

leaders only facilitate cooperation.

The role of the coach is similar to a scrum master in agile

development. The coach is usually a student who has taken

the course before and is familiar with the infrastructure and

organizational matters. Coach learns management skills by

observing project leader and attending meetings with other

coaches where senior staff mentors them. Apart from assisting

the project leader with management, the coach also acts as

a communication channel between the project leader and

developers.

Each semester, there are several course-wide workflows

independent of all project teams. The workflows are course-

wide expert platforms that provide deepening knowledge and

help. The workflow experts prepare self-learning materials,

presentations, and workshops about respective fields.

In this case study, there are four workflow teams: Modeling;

Release; Usability; Development. The workflow experts are

taken over by coaches. Usually, three coaches are working

on one workflow. Inside each project team, there are corre-

sponding workflow managers who act as liaisons to workflow

experts. The workflow experts are responsible to answer

workflow managers’ questions and help workflow managers

resolve problems in that domains.

Similar to Scrum, the team performs regular Sprint plan-

ning, Sprint review, and Sprint retrospective inside each Sprint

and creates at least one release at the end of each Sprint.

Each Sprint also usually takes two weeks. Instead of using

traditional daily scrum meetings, weekly team meetings aim

to deal with the situation that students participate in this course

as part-time developers.

Figure 1 describes the lifecycle of the project course.

It shows the average effort of each workflow(Requirements

Elicitation, Analysis, Design, Implementation, Test, Project

Management, and Release Management) throughout the whole

539

Fig. 1. The lifecycle model of the project course [7, 22]

timeline of the project course. Figure 1 also marks several

important events, documents, and releases.

Requirements elicitation starts from the predevelopment

phase and continues throughout the whole project course. Dur-

ing the course of the project, some non-documented require-

ments will arise from meetings and other formal or informal

communication. This fluid information, together with solid

documented requirements, are both worth considering [31].

Therefore, we also encourage students to use informal mod-

els[13] to communicate with customers and exchange ideas

within the team. Using formal and informal models in real

projects increases students’ engagement and understanding of

those software engineering concepts, especially modeling, that

students often do not like [25].

There are two important meetings marked as milestones

during each semester’s project course. Both are course-wide

events for students to present their work publicly to all clients,

all teams, and also their friends.

The first milestone, Design Review, happens around two-

thirds time of the course. Each team presents its understanding

of the problem, the requirements, the design, and the current

status of the system. The team also shows a 60-seconds they

shoot in Sprint 0 to demonstrate the application in an attractive

way. A demo can be performed by the team in form of a short

theater play [24, 36], which can still include workarounds and

mocks.

The second milestone, CAT (Client Acceptance Test), takes

place at the end of the course, usually three months after Kick-

off. Each team presents the requirements and the architecture

of the system combined with another demo. Different from

the first milestone’s demo, what is shown in the demo should

be implemented without workarounds and mocks.

This case study is conducted on-site. Students are free to

choose wherever they want to work or meet. There are several

rooms open to all students that they can use for regular team

meetings, workshops, meet-ups, and workflow help desks in

the university. All room setup is similar to Schild’s Creativity

Room 555 [17], an informal and pleasing environment where

students can actively discuss and get distracted less by devices.

All students are equally offered all-day access to those rooms.

B. Methodology

Here we describe the criteria we use in our case study for

problem statement classification and creativity evaluation.

1) Problem statements classification: There are 17 problem

statements in total, which are classified into 3 types. The

threshold to classify requirements level, 15, is calculated by

adding mean, 12, and standard deviation, 3. A problem state-

ment containing no more than 15 requirements is seen as low

requirements level, and one with more than 15 requirements

is seen as high requirements level.

TABLE I
Problem statements requirements classification results

Category Projects
Known problems and low requirements level 11
Known problems and high requirements level 5

Unknown problems 1

Table I shows the number of problem statements inside each

requirement type.

Unknown problems type is a relatively rare problem state-

ment type. This type appeared only once among the 17

problem statements that we collected.

Inside known problems and low requirements level type,

it is further split into two categories based on the number

of constraints vocabulary occurrences. The constraint word

list contains: must; be able to; can; should; have to. Similar

to requirements level classification, constraints vocabulary

occurrences classification also uses the same way to pick

threshold, which is 30 after calculation.

TABLE II
Low requirements level problem statements constraints classification results

Category Projects
Constraints words < 30 occurrences 9
Constraints words ≥ 30 occurrences 2

Table II shows the number of problem statements of two

different constraint types.

2) Creativity measurement: The measurement of creativ-

ity is based on a self-evaluation questionnaire and docu-

mentation. We invited all 22S semester course participants,

around 60 students, to take this questionnaire. Considering

everyone can have very different understandings of creativity

and innovation, we explained creativity and innovation at the

very beginning of the survey. ”In this survey, creativity and

innovation focus on finding new and useful ways to solve

known problems as well as discovering unknown and valuable

unknown problems.”

540

The questionnaire contains 9 mandatory single-choice ques-

tions and 4 conditional open questions. The design of the

questions, inspired by the 4P model, covers person(personality,

attitudes, self-concept, and behavior), process(thinking and

communication), and product(the idea that is transformed into

a tangible form), these three creativity dimensions. The fourth

dimension, place(press), is eliminated as all teams are offered

the same environment. Table III describes all the questions

and their categories in the questionnaire.

TABLE III
Questionnaire questions

Perspective Question Title

Person

Q1 Before starting the project, do you think you
are creative or innovative?

Q2 After completing the project, do you think
you are creative or innovative?

Q8 Why do you think you are (not) creative or
innovative?

Process

Q3

Before starting the project, do you feel
empowered to propose new ideas in your
study or work that are considered creative
or innovative?

Q4

During working on the project, do you
feel empowered to propose new ideas or
solutions that are considered creative or
innovative?

Q5

After completing the project, do you feel
empowered to propose new ideas in your
study or work that are considered creative
or innovative?

Product

Q6 Before starting the project, do you think the
project is creative or innovative?

Q7 After completing the project, do you think
the project is creative or innovative?

Q9 Why do you think the product is (not)
creative or innovative?

We analyzed the documentation of all 17 projects. The fea-

ture analysis adopts a trait list [15] of more than 600 adjective

characteristic words. Using the word vector from spacy [19],

en core web lg, which includes 685k unique vectors, the

most similar 20 words to ”innovative” are chosen among all

600 traits, such as ”creative”, ”sophisticated”, ”imaginative”,

and so on. Next, the documentation is pre-processed by

using tokenization and removing stopwords. Then through

lemmatization from Spark, all words are assigned to the base

forms. In the last step, the CountVectorizer model reads each

processed documentation and generates the occurrence of the

innovative trait words which we obtained in the first step. The

innovation factor of each documentation is inferred by the

number of occurrences of innovative-related trait words.

C. Results

All projects were successfully completed in one semester.

Clients all expressed their acceptance of the final results of the

project. So from an overall measurement, the final outcomes

and length of time spent on each project can be considered the

same. In other words, the overall efficiency of each project is

the same.

The results below include statistics from self-assessment

survey answers and the number of creative traits in documen-

tations.

1) Survey results: Among the 60 surveys we sent, 31

complete responses are received. The answers to single-choice

questions are grouped into the 3 creativity dimensions: Person,

Process, and Product. All answers in each group are about

the same focus on one dimension with different time periods:

Before starting the project and after completing the project.

The answers to the single-choice questions are assigned to

specific projects according to the first question asking which

project team this participant belongs to. Then the answers of

all projects are distributed to the problem statement categories

they were previously classified as, such as low requirements

level and high requirements level, low requirements level with

fewer than 30 constraints words and low requirements level

with over 30 constraints words.

Since the number of items under each category is very

different and each category contains more than 6 complete

responses, the percentage of all answers within a category

rather than the number of responses can represent some

characteristics of the category more clearly. The counts are

transformed into percentage distribution in the final results.

Fig. 2. Do you think you are creative or innovative?

Figure 2 depicts the answer distribution of Q1 and Q2

focusing on person dimension in low requirements level and

high requirements level before starting and after completing

the projects.

Fig. 3. Before starting the project, do you think you are creative or innovative?

Figure 3 shows the answer distribution of Q1 focusing on

person in fewer than 30 constraints word counts type and over

30 constraints word counts type under the low requirements

level category.

541

Fig. 4. Are you empowered to propose new ideas in your study or work that
are considered creative or innovative?

Figure 4 depicts the answer distribution of the Q3, Q4, and

Q5 focusing on process perspective in low requirements level

and high requirements level before starting, during develop-

ment, and after completing the projects.

Fig. 5. Before starting the project, do you feel empowered to propose new
ideas in your study or work that are considered creative or innovative?

Figure 5 shows the answer distribution of Q3 focusing on

process perspective in fewer than 30 constraints word counts

type and over 30 constraints word counts type under the low

requirements level category.

Fig. 6. Do you think the product is creative or innovative?

Figure 6 depicts the answer distribution of Q6 and Q7

focusing on product perspective in low requirements level and

high requirements level before starting and after completing

the projects.

Figure 7 shows the answer distribution of Q6 focusing on

process perspective in fewer than 30 constraints word counts

type and over 30 constraints word counts type under the low

requirements level category.

For optional open questions, we received 11 answers for

each.

The answers to “Why do you think you are creative or

innovative” include the following examples.

Fig. 7. Before starting the project, do you think the product is creative or
innovative?

• There were some things that I proposed adding (some-

times added without proposing) to the app that was

actually appreciated by the client, project lead, and team

members.

• Always trying to improve everything and make it effi-

cient.

• Non-programming tasks open more opportunities, UI, and

software theatre.

• I can think out of the box if needed, and the coaches

also positively enforced brainstorming for new ideas that

took our project in a different direction. Normal solutions

would have made the project very dull.

The answers to “Why do you think the project is creative

or innovative” include the following examples.

• The idea of the project was quite futuristic, but not unreal.

I can definitely see our app fulfilling the demands of

people living in a future, where electric cars are very

common.

• The project combines both navigation and AR, there are

existing technologies for both, but the combination is still

quite new. There are other works out there that combine

them, but not a lot.

• It brings about new approaches to dealing with common

problems. This system can potentially take care of your

medical setup, actively replacing a sales representative,

while being easy to use, accessible and portable. It saves

time and effort, that’s while reaching the same goal,

which is innovative and even creative at times.

2) Documentation results: Table IV shows the documen-

tation analysis results of creative or innovation traits on 7

documentations. The innovative traits occurrences are seen as

the innovative evaluation factor. The more innovative traits

words occurred in one documentation, the more innovative

the project is. For known problems and low requirement

levels projects, each of their documentation contains 4.25

innovative traits words occurrences on average. For high-

requirement levels projects, each contains 3 innovative traits

occurrences. And for the unknown problems project type, each

documentation has 6 innovative traits words occurrences.

TABLE IV
Documentation traits words occurrences result

Category Traits
Known problems and low requirement levels 4.25
Known problems and high requirement levels 3

Unknown problems 6

542

D. Findings
The following findings are generated after comparing the

results in different categories and different periods.

Finding 1: All problem statements end up with better

creativity and innovation results than before.

In Figure 2, from person perspective, by comparing the

before and after course results, we can find the following

improvements. For the low requirements level category, the

very or extremely parts have risen from 28% to 64%. For

moderately and slightly parts, which were the majority before,

have decreased from 72% to 36%. Similarly, in the high

requirements level category, the parts that exceeds moderately

have increased from 40% to 60%, and the parts below moder-

ately have decreased from 60% to 40%. Both types of people

who felt that they were only slightly creative before starting

the projects, believe that they are at least moderately creative

after completing projects.
In Figure 4, from process perspective, after finishing the

course, students are more confident to share creative ideas

and solutions than before. For the low requirements level

category, the beyond moderately empowered parts have risen

from 44% to 92%, while the below moderately empowered

parts have decreased from 56% to 8%. Those who were

afraid of proposing creative ideas and solutions now feel

comfortable sharing. In the end, almost all students feel very or

extremely empowered to propose creative ideas and solutions.

For the high requirements level category, the part that exceeds

moderately, which is the very part, has also increased a bit

from 33% to 50%, while the moderately and slightly parts

which were the majority before, have decreased from 67% to

50%.
In Figure 6, from product perspective, most students find

the product more creative than in the beginning. For the low

requirements level category, the beyond moderately creative

parts, have risen from 56% to 80%. For the high requirements

level category, the part that exceeds moderately has increased

from 33% to 67%. Those who thought the product is not

creative at all changed their opinions after completing the

projects.
To sum up, the creativity and innovation measurements in

all three dimensions for all problem statements have been

improved after the project is completed.

Finding 2: Software engineering students’ innovative

self-awareness can be improved through external affir-

mation from the team, appropriate encouragement, and

guidance, and a broader space which is not just limited

to programming.

From the result of Q8 where students explained the reason

why they feel more creative, most students claim that their

confidence in their creativity comes from external affirma-

tion, some appropriate encouragement and enforcement, and

also the discovery of their creative ability in some non-

programming tasks that are not usually found in computer

science exercises. After the course, more than 50% of the

participants agreed that innovation can be improved through

learning.

Finding 3: Low requirements problem statements have a

higher potential to achieve higher creative or innovative

results.

In Figure 2, the low requirements level problem state-

ments in the category have some participants who consider

themselves extremely creative before and after the project.

However, nobody from the high requirements level projects

feels extremely creative or innovative ever.

In Figure 4, in the low requirements level problem state-

ments category, there are students feeling extremely empow-

ered to propose creative ideas and solutions before, during,

and after the project, but there is still nobody in the high

requirements level category. After completing the project, 92%

of low requirements level projects feel very or extremely

empowered to propose creative ideas or solutions while in

high requirements level projects only 50% feel empowered to

the same extent.

In Figure 6, although before starting, a higher proportion,

33% of participants from the high requirements level type

thought their products were extremely creative or innovative,

only 17% remain the same extremely creative evaluation in

the end. After completing projects, 80% of low requirements

level projects think the product is beyond moderately creative

or innovative, while for high requirements levels only 67%

think so and there are also 17% who think the product is just

slightly creative.

To sum up, combining the three innovation dimensions, low

requirements problem statements performs better than high

requirements problem statements in the most innovative part.

Finding 4: Low requirements level problem statements

that contain fewer constraint words make students feel

more creative about themselves, the process, and the

products before starting development.

In Figure 3, before starting projects, among students of low

constraint words occurrences type, only 6% think themselves

are below moderately creative, while for students of over 30

constraint words occurrences type, 13% feel below moderately

creative. In the meantime, 6% of the fewer constraint words

occurrences type think they are extremely creative or inno-

vative, while for over 30 constraint words occurrences type,

none think they are extremely creative.

In Figure 5, before starting projects, 9% more students in

the low constraint words occurrences type feel more than mod-

erately empowered in over 30 constraint words occurrences

type.

In Figure 7, before starting projects, 12% in low constraint

words occurrences type think the products are less than

moderately creative, whereas in high constraint words occur-

rences type the proportion is 25%. For extremely creative part

comparison, 12% from low constraint type think the products

543

are extremely creative but nobody from high constraint type

thinks so.

To sum up, fewer constraint words have a positive effect

on students’ creativity and how they think about the product’s

creativity before starting the projects.

Finding 5: Problem statements with unknown problems

create more creative or innovative products.

In Table IV, among these three types, the unknown problem

type has the highest innovative traits occurrences, followed

by the low requirements level type, and finally the high

requirements level type. From this, we can infer that the

unknown problem type products are more likely to contain

more innovative elements, and the products are more likely to

be more creative.

E. Discussion

Creativity depends on being encouraged and affirmed, so

creating an environment that welcomes creativity is crucial in

teaching. From the survey results, students’ self-perception of

creativity largely comes from the approval of their creative

ideas by leaders and team members. At the end of the project,

students generally believe that creativity is a learnable skill,

and most of them also believe that they are more creative

than before. More importantly, the students feel that they are

also more confident and more comfortable bringing up creative

ideas so there will be fewer barriers to creativity.

Hypothesis H1: The amount of requirements that affect

creativity, is supported by Finding 3. With fewer requirements

defined at the beginning of the practical project course, there

will be more potential for creativity. Clients should manage to

control the number of initial requirements as few as possible,

so the initial requirements can indicate the needs and in the

meantime, leave more space for creativity.

Hypothesis H2: Problem statements with unknown problems

allow for more creative project results, supported by Finding

5. Whether a specific problem is defined also influences

creativity. When clients are not sure about the product features,

it is an option to leave the initial project description as an open

topic and let it to students. It is worth mentioning that since

the unknown problem type has only one project, the generality

of the impact of this type also deserves continued attention in

the future.

The way of expressing the initial description of the project

also matters. A more open, suggestive tone to express ideas

and reducing the use of constraint words can better encourage

innovation.

In addition, we strongly suggest monitoring further com-

munication between the clients and the team. The problem

statement is just one gateway to a month-long collaboration

between both parties. It proposes a communication and control

standard for the project, that could be loosened or strengthened

with time.

In our study, since all projects were carried out in the same

environment, the influence of environment on creativity was

not taken into account. In the future, we also recommend

further investigating how much different factors, such as the

number of requirements, constraints words, and environment

influence creativity.

VI. LIMITATIONS

Threat to internal validity: Since the questionnaire is

carried out in the end, the feelings in the early stage may

be blurred in the participant’s memory. The students may tend

to present themselves in a better light because they are afraid

of getting a worse grade. We, therefore, collected the data

anonymously.
Threat to external validity: The case study covers all

problem statement types discussed in this paper. However, it

is more common to have problem statements defined with a

specific problem. There is only 1 project belonging to the

unknown problem type among the 17 projects. Additional

observations for the upcoming semesters are needed to better

understand this type better. Project participants include not

only students but also stakeholders and customers. Different

roles result in different perspectives and may also perceive

innovation differently, so measurements from more roles will

also be valuable in future research.
Threat to construct validity: Although we tried to design

the questionnaire questions in a simple and general format

using a customized Likert scale, the results can still be subject

to distortion [16]. Creativity has been proven to be influenced

by entrepreneurship [1]. Different stakeholders can also lead

to different impacts on creativity and efficiency.

VII. CONCLUSION

Balancing creativity and efficiency is crucial in teaching

practical software engineering courses. In order to better

stimulate potential creativity, it is very helpful to create a

creative-friendly atmosphere at the beginning of the course.
When a problem has been well identified by clients, reduc-

ing the number of initial requirements to less than 15 and

the use of constraint words to less than 30 is one approach.

Another approach is to grant students the freedom to explore

the unknown problem space of a specific topic. We measured

and evaluated the creativity of related problem statement types

in a case study consisting of 17 projects. Both approaches

are proven to have enhanced students’ creative skills to a

higher level in terms of self-awareness, communication, and

implementation.

REFERENCES

[1] Teresa A Amabile and Mukti Khaire. “Creativity and

the role of the leader”. In: (2008).

[2] Teresa M Amabile, Jennifer S Mueller, William B

Simpson, Constance N Hadley, Steven J Kramer, Lee

Fleming, et al. “Time pressure and creativity in organi-

zations: A longitudinal field study”. In: (2002).

[3] Mikko Apiola, Matti Lattu, and Tomi A Pasa-

nen. “Creativity-Supporting Learning Environment—

CSLE”. In: ACM Transactions on Computing Education
(TOCE) 12.3 (2012), pp. 1–25.

544

[4] Wayne Brookes. “On creativity and innovation in the

computing curriculum”. In: Proceedings of the 20th
Australasian Computing Education Conference. 2018,

pp. 17–24.

[5] Bernd Bruegge and Allen H Dutoit. “Object–oriented

software engineering. using uml, patterns, and java”.

In: Learning 5.6 (2009), p. 7.

[6] Bernd Bruegge, Stephan Krusche, and Lukas Alper-

owitz. “Software engineering project courses with in-

dustrial clients”. In: ACM Transactions on Computing
Education (TOCE) 15.4 (2015), pp. 1–31.

[7] Bernd Bruegge, Stephan Krusche, and Martin Wagner.

“Teaching Tornado: from communication models to

releases”. In: Proceedings of the 8th edition of the
Educators’ Symposium. 2012, pp. 5–12.

[8] Nergiz Ercil Cagiltay. “Teaching software engineering

by means of computer-game development: Challenges

and opportunities”. In: British Journal of Educational
Technology 38.3 (2007), pp. 405–415.

[9] Marian Daun, Alicia M Grubb, Viktoria Stenkova, and

Bastian Tenbergen. “A systematic literature review of

requirements engineering education”. In: Requirements
Engineering (2022).

[10] Marian Daun, Andrea Salmon, Bastian Tenbergen,

Thorsten Weyer, and Klaus Pohl. “Industrial case

studies in graduate requirements engineering courses:

The impact on student motivation”. In: 27th Confer-
ence on Software Engineering Education and Training
(CSEE&T). IEEE. 2014, pp. 3–12.

[11] Marian Daun, Andrea Salmon, Thorsten Weyer, Klaus

Pohl, and Bastian Tenbergen. “Project-based learning

with examples from industry in university courses: an

experience report from an undergraduate requirements

engineering course”. In: 29th International Confer-
ence on Software Engineering Education and Training
(CSEET). IEEE. 2016, pp. 184–193.

[12] Dora Dzvonyar, Lukas Alperowitz, Dominic Henze, and

Bernd Bruegge. “Team composition in software engi-

neering project courses”. In: International Workshop
on Software Engineering Education for Millennials
(SEEM). IEEE. 2018, pp. 16–23.

[13] Dora Dzvonyar, Stephan Krusche, and Lukas Alper-

owitz. “Real Projects with Informal Models.” In:

EduSymp@ MoDELS. 2014, pp. 39–45.

[14] Raymond Flood and Bob Lockhart. “Teaching program-

ming collaboratively”. In: Proceedings of the 10th an-
nual SIGCSE conference on Innovation and technology
in computer science education. 2005, pp. 321–324.

[15] Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and

James Zou. “Word embeddings quantify 100 years of

gender and ethnic stereotypes”. In: Proceedings of the
National Academy of Sciences 115.16 (2018), E3635–

E3644.

[16] Ron Garland. “The mid-point on a rating scale: Is it

desirable”. In: Marketing bulletin (1991), pp. 66–70.

[17] Timo Göttel and Jonas Schild. “Creativity room 5555:

Evoking creativity in game design amongst CS stu-

dents”. In: Proceedings of the 16th annual joint confer-
ence on Innovation and technology in computer science
education. 2011, pp. 98–102.

[18] Wouter Groeneveld, Brett A Becker, and Joost Ven-

nekens. “How Creatively Are We Teaching and Assess-

ing Creativity in Computing Education: A Systematic

Literature Review”. In: Proceedings of the 53rd ACM
Technical Symposium on Computer Science Education
V. 1. 2022, pp. 934–940.

[19] Matthew Honnibal and Ines Montani. “spaCy 2: Natural

language understanding with Bloom embeddings, con-

volutional neural networks and incremental parsing”. In:

To appear 7.1 (2017), pp. 411–420.

[20] Ivar Jacobson, Grady Booch, and James Rumbaugh.

“The unified process”. In: IEEE Software 16.3 (1999),

p. 96.

[21] Ankur Joshi, Saket Kale, Satish Chandel, and D Kumar

Pal. “Likert scale: Explored and explained”. In: British
journal of applied science & technology 7.4 (2015),

p. 396.

[22] Stephan Krusche. “Rugby-a process model for con-

tinuous software engineering”. PhD thesis. Technische

Universität München, 2016.

[23] Stephan Krusche, Bernd Bruegge, Irina Camilleri, Kirill

Krinkin, Andreas Seitz, and Cecil Wöbker. “Chaordic

learning: A case study”. In: 39th International Confer-
ence on Software Engineering: Software Engineering
Education and Training Track (ICSE-SEET). IEEE.

2017, pp. 87–96.

[24] Stephan Krusche, Dora Dzvonyar, Han Xu, and Bernd

Bruegge. “Software theater—teaching demo-oriented

prototyping”. In: ACM Transactions on Computing Ed-
ucation (TOCE) 18.2 (2018), pp. 1–30.

[25] Stephan Krusche, Nadine von Frankenberg, Lara Marie

Reimer, and Bernd Bruegge. “An interactive learning

method to engage students in modeling”. In: 42nd In-
ternational Conference on Software Engineering: Soft-
ware Engineering Education and Training. IEEE. 2020,

pp. 12–22.

[26] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti

Järvinen. “A study of the difficulties of novice program-

mers”. In: Acm sigcse bulletin 37.3 (2005), pp. 14–18.

[27] Joao Lemos, Carina Alves, Leticia Duboc, and Genaina

Nunes Rodrigues. “A systematic mapping study on

creativity in requirements engineering”. In: Proceedings
of the 27th Annual ACM Symposium on Applied Com-
puting. 2012, pp. 1083–1088.

[28] Charlie McDowell, Brian Hanks, and Linda Werner.

“Experimenting with pair programming in the class-

room”. In: Proceedings of the 8th annual conference
on Innovation and technology in computer science
education. 2003, pp. 60–64.

545

[29] Jonathan A Plucker, Ronald A Beghetto, and Gayle T

Dow. “Why isn’t creativity more important to edu-

cational psychologists? Potentials, pitfalls, and future

directions in creativity research”. In: Educational psy-
chologist 39.2 (2004), pp. 83–96.

[30] F Preckel, H Holling, M Weise, R Richards, DK Kin-

ney, M Benet, APC Merzel, AC Sligh, FA Conners,

B Roskos-Ewoldsen, et al. “Creativity: Theories and

Themes: Research, Development, and Practice by Mark

A. Runco, Elsevier Academic Press, 2007, 492 pp.

ISBN 13: 978-0-12-602400-5..” In: Human Physiology
26 (), pp. 516–522.

[31] Kurt Schneider, Kai Stapel, and Eric Knauss. “Beyond

documents: visualizing informal communication”. In:

Requirements Engineering Visualization. IEEE. 2008,

pp. 31–40.

[32] Ken Schwaber. Agile project management with Scrum.

Microsoft press, 2004.

[33] Ken Schwaber and Mike Beedle. Agile software devel-
opment with scrum. Series in agile software develop-
ment. Vol. 1. Prentice Hall Upper Saddle River, 2002.

[34] Ken Schwaber and Jeff Sutherland. “The scrum guide”.

In: Scrum Alliance 21.19 (2011), p. 1.

[35] Masashi Shuto, Hironori Washizaki, Katsuhiko Kakehi,

Yoshiaki Fukazawa, Shoso Yamato, Masashi Okubo,

and Bastian Tenbergen. “Relationship between the

five factor model personality and learning effective-

ness of teams in three information systems education

courses”. In: 18th International Conference on Software
Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD). IEEE. 2017,

pp. 167–174.

[36] Han Xu, Stephan Krusche, and Bernd Bruegge. “Using

software theater for the demonstration of innovative

ubiquitous applications”. In: Proceedings of the 10th
Joint Meeting on Foundations of Software Engineering.

2015, pp. 894–897.

546

