
Direct Automated Feedback Delivery for Student Submissions
based on LLMs

Maximilian Sölch
maximilian.soelch@tum.de

Technical University of Munich
Munich, Germany

Felix T.J. Dietrich
felixtj.dietrich@tum.de

Technical University of Munich
Munich, Germany

Stephan Krusche
krusche@tum.de

Technical University of Munich
Munich, Germany

Abstract
Timely and individualized feedback is essential for students’ learn-
ing progress and motivation, yet providing such feedback has be-
come increasingly challenging due to growing student numbers.
This has resulted in a time-consuming, repetitive, and often manual
task for educators, contributing to a high workload.

This paper presents DAFeeD, an LLM-based approach for au-
tomated feedback on student submissions across various exercise
domains. The defined feedback process enables interactive learn-
ing by allowing students to submit solutions multiple times and
automatically receive iterative LLM feedback on their submission
attempts before deadlines. By incorporating task details, grading
criteria, student solutions, and custom instructions into the prompt,
DAFeeD provides clear, personalized, and pedagogically meaningful
feedback to support continuous improvement.

To evaluate the feedback process, we implemented DAFeeD in
an open-source reference implementation integrated into the learn-
ing platform Artemis. A controlled study with students working
on a programming task in a supervised environment showed that
students found the feedback relevant and beneficial. They reported
feeling more comfortable and willing to request automated feed-
back due to its convenience and immediacy. Additionally, deploy-
ing DAFeeD in a software engineering course with 450 students
demonstrated improvements in student performance and encour-
aged iterative refinement through multiple submissions.

These findings highlight DAFeeD’s potential to enhance feed-
back processes in computing education, improving both learning
efficiency and student outcomes.

CCS Concepts
• Social and professional topics→ Student assessment; • Ap-
plied computing→ Education.

Keywords
Software Engineering, Education, Grading, Formative Feedback
ACM Reference Format:
Maximilian Sölch, Felix T.J. Dietrich, and Stephan Krusche. 2025. Direct
Automated Feedback Delivery for Student Submissions based on LLMs. In
33rd ACM International Conference on the Foundations of Software Engineer-
ing (FSE Companion ’25), June 23–28, 2025, Trondheim, Norway. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3696630.3727247

This work is licensed under a Creative Commons Attribution 4.0 International License.
FSE Companion ’25, Trondheim, Norway
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1276-0/2025/06
https://doi.org/10.1145/3696630.3727247

1 Introduction
In the current educational landscape, providing timely and effec-
tive feedback to students remains a significant challenge for both
students and educators. Traditionally, students must wait for ed-
ucators to review their submissions and provide feedback. This
process can be time-consuming, often requiring students to arrange
meetings and wait for available time slots, which are not always
convenient or immediate. Similar it is time-consuming and tedious
for educators to provide asynchronous feedback via email or other
communication channels [15]. The inherent delays and scheduling
difficulties make this approach not scalable, especially in courses
with a large number of students.

Providing individualized feedback and enabling students to en-
hance their knowledge through formative assessments are impor-
tant components of effective learning [16, 18]. However, the limited
availability of educators means that not all students receive the
individualized attention they need to improve their understanding
and skills. This situation underscores the necessity for a more ef-
ficient and scalable feedback system that can provide continuous
support and feedback to students without the constraints of tradi-
tional methods [33]. Such a feedback system enables interactive
learning for students, increasing their engagement in the course
resulting in better final grades [24].

In this paper, we present Direct Automated Feedback Delivery
(DAFeeD), an approach for generating feedback on student sub-
missions using the assistance of large language models (LLMs),
to address these challenges. DAFeeD uses the exercise problem
statement, predefined grading criteria (when available), the student
solution and custom instructions to create a prompt for the LLM
with the aim to create didactically meaningful feedback that sup-
ports the learning process. Designed to provide educators with full
control and the ability to fine-tune the prompt, DAFeeD aims to
reduce time spent on repetitive tasks, allowing educators to focus
more on direct interactions with students. The approach is indepen-
dent of the exercise type and can be applied and adapted to various
domains, such as programming, text, or modeling exercises.

We implemented the approach in an open-source reference im-
plementation called Athena, connected to the learning platform
Artemis [23] through which students submit their solutions and
receive feedback. To validate the effectiveness and efficiency of
the approach, we first tested it in a controlled environment, then
employed it in an actual software engineering course. With this
paper, we want to answer the following research questions about
direct automated feedback delivery:

RQ1 Do students feel more comfortable requesting automatic
feedback from DAFeeD than asking a human educator?

RQ2 How do students perceive the effectiveness of DAFeeD?

https://orcid.org/0009-0004-1509-7842
https://orcid.org/0009-0007-5826-2061
https://orcid.org/0000-0002-4552-644X
https://doi.org/10.1145/3696630.3727247
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3696630.3727247

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Maximilian Sölch, Felix T.J. Dietrich, and Stephan Krusche

RQ3 How do students perceive the usability and helpfulness of
DAFeeD?

RQ4 Does the DAFeeD process improve students’ performance?
RQ5 How does DAFeeD’s feedback compare against human tutor

feedback?

The subsequent sections of this paper are systematically struc-
tured to offer a thorough understanding of the research. Section 2
provides an overview of related work. Section 3 details the concept
and methodology of DAFeeD. Section 4 describes the reference
implementation of DAFeeD, called Athena, including a general
overview, details on the used prompts, and the system architecture.
Section 5 describes the study design, presents the evaluation results,
and outlines findings and limitations. Finally, Section 6 concludes
with a summary of findings and discusses future research directions
to enhance automated feedback systems.

2 Related Work
Automated feedback systems have gained significant attention in
educational research due to their potential to scale online education
and reduce the time between submission and feedback. Hahn et al.
[14] conducted a systematic review on the effects of automatic scor-
ing and feedback tools, emphasizing their crucial role in enhancing
scalability, reducing bias, and increasing student engagement. Their
insights highlight the broader implications of automated feedback
systems in education, which is highly relevant to this work’s study.

In the domain of programming education, Keuning et al. [21] re-
viewed 101 tools for automated feedback on programming exercises.
They noted that most tools focus on error identification rather than
providing actionable guidance or adapting to specific instructional
needs. Extending this work, Kiesler et al. [22] explored the effective-
ness of LLMs like ChatGPT in generating formative programming
feedback, finding that while LLMs can produce useful feedback,
they often include misleading information for novices. This em-
phasizes the need for careful design and evaluation of LLM-based
feedback systems to ensure reliability and accuracy.

Kazemitabaar et al. [20] examined how novice programmers
interact with LLM-based code generators in self-paced learning
environments. They identified distinct usage patterns and their
impact on learning outcomes, revealing that a “Hybrid” approach
— combining manual coding with LLM assistance — was most ben-
eficial for learners. This aligns with findings by Buçinca et al. [10],
who highlighted the dangers of over-reliance on AI and proposed
cognitive forcing functions to encourage deeper engagement with
AI outputs. Similarly, Becker et al. [7] discussed both the opportuni-
ties and challenges of AI-driven code generation tools, emphasizing
the need for educators to guide students in leveraging these tech-
nologies effectively without becoming dependent on them. These
findings highlight the importance of balancing AI assistance with
traditional learning methods, which is a key consideration in the
DAFeeD approach.

The importance of timely and specific feedback is well-documented.
Shute [32] provided a comprehensive review of formative feed-
back, highlighting its necessity for being non-evaluative, supportive,
timely, and specific. Dawson et al. [12] further explored percep-
tions of effective feedback, revealing that while educators focus on
design aspects such as timing and modalities, students prioritize

the quality and usability of feedback comments. This underscores
the need for automated feedback systems to deliver not only timely
but also detailed, specific, and personalized comments.

Adaptive and immediate feedback mechanisms have been shown
to significantly enhance student learning outcomes. Marwan et al.
[28] demonstrated that adaptive and immediate feedback can im-
prove student performance and motivation. Similarly, Leinonen
et al. [25] compared immediate and scheduled feedback, concluding
that immediate feedback is more effective in promoting student en-
gagement and timely corrections. These studies collectively stress
the potential of automated feedback systems in providing timely,
adaptive, and engaging feedback, crucial for continuous improve-
ment and learning efficiency.

The work by Azaiz et al. [6] highlights the limitations of LLMs,
advising against using GPT-4 Turbo for automatic feedback genera-
tion in programming education due to inconsistencies. In contrast,
this work’s research with DAFeeD evaluates an integrated direct
automatic feedback delivery process within a learning management
system (LMS), demonstrating its potential immediate benefits for
students, especially when feedback is critically evaluated. We be-
lieve that increasingly powerful LLMs and advanced prompting
strategies will enhance feedback quality over time, with appropriate
guardrails to prevent revealing solutions.

The study by Liffiton et al. [26] introduces CodeHelp, an LLM-
powered tool that provides real-time assistance to programming
students. In a first-year computer science course with 52 students,
CodeHelp collected data over 12 weeks, revealing that students
valued its availability, immediacy, and support for error resolution
and independent learning. CodeHelp requires students to manu-
ally enter code, error messages, and issue descriptions. In contrast,
DAFeeD integrates into the LMS, automatically providing context
and feedback on code repository changes without requiring student
input. This seamless integration aims to increase student engage-
ment and motivation by offering timely, individualized feedback
automatically, and to improve perceptions of feedback effectiveness,
usability, and helpfulness.

Similarly, Nguyen and Allan [29] demonstrate the feasibility
of using GPT-4 for tiered, formative feedback on programming
exercises in introductory courses, providing insights on concep-
tual understanding, syntax, and time complexity. The DAFeeD
approach proposed in this paper is evaluated using a similar LLM,
GPT-4 Turbo, and likewise focuses on providing formative feed-
back in introductory courses. However, while Nguyen and Allan
[29] provide feedback on isolated code snippets using few-shot
learning, DAFeeD delivers iterative feedback on entire repositories
with multiple files using detailed prompts and context collection.
Additionally, DAFeeD is integrated directly into an LMS, support-
ing multiple exercise domains, which allows students to iteratively
improve their submissions before the deadline, aiming to enhance
learning outcomes and engagement through interactive learning.

Woodrow et al. [37] explore the deployment and effectiveness
of a real-time style feedback tool using LLMs, specifically GPT-3.5
Turbo, in a large-scale online CS1 course. Their findings indicate
significant improvements in student engagement and coding style
when feedback is immediate and integrated within the learning
platform. Woodrow et al. conducted a randomized control trial with
over 8,000 students, demonstrating that real-time feedback was

Direct Automated Feedback Delivery for Student Submissions based on LLMs FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

five times more likely to be viewed and incorporated by students
compared to delayed feedback. This supports the approach with
DAFeeD, emphasizing the importance of immediate, individualized
feedback in enhancing student learning outcomes.

Besides programming exercises, recent studies have explored
using LLMs to provide automated feedback in UMLmodeling educa-
tion. Ardimento et al. [4] introduced a cloud-based tool that utilizes
Retrieval-Augmented Generation (RAG) to analyze UML diagrams
and offer contextually relevant suggestions. An evaluation with
5,120 labeled UML models demonstrated its effectiveness in helping
students identify and correct common errors, enhancing their un-
derstanding of UML concepts. A follow-up study further improved
error detection and provided real-time, constructive feedback, with
user feedback highlighting the tool’s potential to enhance software
modeling education [5].

Similarly, Cámara et al. [11] examined generative AI tools, such
as ChatGPT, for formative assessment in UML modeling tasks.
Their findings show that AI-assisted feedback helps students track
their progress and improve performance compared to traditional
methods. However, the study also emphasizes the importance of
educating students on AI limitations to prevent over-reliance on
automated feedback.

A broader perspective on the capabilities and challenges of LLMs
is provided by Wei et al. [34], who discussed the emergent abilities
of LLMs that are not present in smaller models, highlighting the
need for ongoing research to harness these capabilities effectively.
Huang et al. [17] addressed the issue of hallucinations in LLMs,
offering an in-depth overview of detection methods and mitigation
strategies crucial for developing reliable feedback systems. Amatri-
ain [3] detailed core concepts and advanced techniques in prompt
engineering, such as Chain-of-Thought and Reflection, which can
enhance the quality and relevance of automated feedback. Addi-
tionally, Liu et al. [27] highlighted the importance of robust prompt
design to prevent misuse, investigating vulnerabilities of LLMs to
jailbreak prompts. Zhao et al. [40] reviewed the evolution and re-
cent advances of LLMs, focusing on pre-training, adaptation tuning,
utilization, and capacity evaluation, and highlighting the progress
and ongoing challenges in the field. Lastly, Yang et al. [38] provided
a comprehensive guide for practitioners working with LLMs, dis-
cussing the influence of pre-training data and challenges associated
with different natural language processing tasks, offering insights
for developing and deploying LLM-based feedback systems.

Beyond LLM-based approaches, Bernius et al. [8, 9] introduced
CoFee, a machine learning system for generating feedback on tex-
tual answers at scale, reducing grading effort while maintaining
high precision.

In summary, the related work collectively highlights the evolving
landscape of automated feedback systems and the significant poten-
tial of LLMs to enhance educational outcomes through immediate,
specific, and actionable feedback. The primary contribution with
DAFeeD lies in its seamless integration within the LMS, supporting
a variety of exercise types and having access to all relevant context
information used for the feedback prompt. By using LLMs, DAFeeD
provides individualized feedback automatically, with a focus on
the feedback delivery process. This approach enables students to
iteratively improve their solutions and learn continuously without
direct intervention from tutors or professors. All of this is possible

without leaving their preferred learning platform. DAFeeD aims to
enhance student engagement, learning efficiency, and performance
through timely, relevant, and personalized feedback, aligning with
and advancing the findings of the reviewed studies.

3 Approach: Direct Automated Feedback
Delivery (DAFeeD)

To complement traditional teachingmethods and provide additional
support, DAFeeD employs LLMs to deliver automated feedback on
student submissions. Figure 1 illustrates the continuous feedback
workflow that DAFeeD facilitates, enabling students to receive
feedback at any time, thereby eliminating the need to wait for
responses from human educators.

The feedback process is designed to be exercise-independent,
meaning that it can be applied and adapted to various exercise types,
such as programming, text, or modeling exercises. DAFeeD can
automatically provide feedback to the students, including feedback
on issues or improvements, as well as positive feedback when the
student completes the task correctly. Once the student submits their
solution, DAFeeD initiates a three-stage process to generate natural
language feedback.

The first stage, called Formatting, takes the student’s submission
and extracts the submission content, the problem statement, includ-
ing learning objectives, and any possible grading instructions the
educator defines. In addition, the student’s learner profile [1] is con-
sidered to generate individualized, personal feedback tailored to the
student’s skills and learning styles. All of this gathered information
represents the context.

During the prompt generation step, a predefined prompt tem-
plate is filled with the individual prompt input data that is included
in the context, resulting in the feedback prompt. Depending on
the exercise, adaptions need to be made to the prompt template to
ensure that the feedback output of the LLM is tailored to the specific
exercise type. For programming exercises, the generated feedback
needs to have metadata information about the file and line number
of the code snippet to which the feedback refers. In the case of text
exercises, the feedback needs to contain metadata identifying the
specific sentence or word range to which it applies. Similarly, for
modeling exercises, metadata must reference the corresponding
model element or relation to ensure precise feedback alignment.

In the second stage, called Predicting, DAFeeD sends the feed-
back prompt to a LLM and invokes it with the prompt. As a result,
the LLM generates a response to that prompt including detailed
feedback items for the student.

The final stage, Parsing, takes the LLM response, which comes
in the JSON format, and parses feedback items from it. In addition
to the feedback text, the feedback object also contains reference
information indicating the part of the submission it pertains to. For
programming exercises, this includes the file name and line number
of the relevant code snippet to which the feedback refers. For text ex-
ercises, the reference information includes only the corresponding
sentence or word range. When it comes to modeling exercises, the
feedback needs to reference the specific model element or relation
it pertains to.

All of the feedback is then returned to the student for review. If
the student is satisfied with the feedback, the process concludes.

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Maximilian Sölch, Felix T.J. Dietrich, and Stephan Krusche

Student

Submit
Solution

Refine
Solution

no
yes Review

Feedback
Satisfied?

Learner Profile

DAFeeD

 Predicting Parsing

 Formatting

Generate PromptCollect Context Feedback
PromptContextSubmission

Invoke LLMParse Feedback
from Response LLM ResponseFeedbackFeedbackFeedback

uses

Figure 1: UML activity diagram of the Direct Automated Feedback Delivery (DAFeeD) workflow for student submissions.

Otherwise, the student can refine and resubmit their solution, initi-
ating the DAFeeD process anew. This iterative process is designed
to motivate students to continuously learn and experiment with
their solutions, resulting in improved performance.

4 Reference Implementation: Athena
We incorporated DAFeeD into a reference implementation named
Athena, which is seamlessly integrated with the learning platform
Artemis. Through Artemis, students can submit their solution and
review the feedback. Athena supports the feedback generation for
programming, text, and modeling exercises.

When submitting their solutions on Artemis, students have the
option to request direct automated feedback by clicking a dedicated
button. This feedback request is then sent to Athena, assuming the
student has not reached their feedback request limit for the exercise.
Educators can customize the limit of allowed feedback requests per
exercise according to their preference. A status visualization in-
forms students about their feedback request state. Once Athena
generates the feedback and sends it back to Artemis, the student
can review it in an inline feedback view window on Artemis. The
feedback view is tailored to different exercise types, ensuring that
feedback is presented in a format most suitable for the nature of the
task. For instance, text exercises include detailed inline comments,
while modeling exercises feature visual annotations on model ele-
ments and relations. An example visualization of the inline feedback
interface for a text exercise submission is depicted in Figure 2.

Figure 2: Visualization of the inline feedback interface for
text exercises on Artemis as seen by students.

The inline feedback view for text exercises offers a targeted ap-
proach by directly associating feedback items with specific text
spans, such as highlighting the second sentence in the example

shown. The interface also distinguishes between referenced feed-
back, tied to specific text, and unreferenced feedback, offering gen-
eral observations.

4.1 Feedback Generation
The prompt design is crucial for guiding the LLM in generating
effective and contextually relevant feedback. The system is config-
urable, allowing the use of different LLMs and model settings. In
Listing 1, we provide an example of a prompt used for generating
feedback for programming exercises. This prompt incorporates spe-
cific instructions to ensure that the feedback is individualized to
the student’s submission while not revealing the solution.

The feedback generation process for programming exercises be-
gins by identifying the differences between the student’s submission
repository and the provided template repository. These differences
are identified using a git diff, which highlights the lines removed
and added by the student. If the problem statement is too lengthy
or complex, a separate LLM invocation is used to split the problem
statement into relevant parts for each file. This ensures that the
feedback is targeted and relevant to the specific context of the file
being reviewed. Additionally, a summary of the student’s solution
across all files is generated using another LLM invocation. This
summary provides a comprehensive overview of the submission,
which is included in the prompt to offer context for the feedback.

In the provided prompt, several key components guide the LLM
in creating useful feedback. The Problem Statement section con-
textualizes the student’s task and helps the LLM understand the
exercise’s objectives. The Task Instructions direct the LLM to provide
improvement suggestions focusing on educational aspects without
offering direct solutions. Style Guidelines ensure the feedback is con-
structive, specific, balanced, clear, concise, actionable, educational,
and contextual. The File Path and Content provide the specific file
under review along with its content, aiding the LLM in pinpointing
specific lines of code for feedback. Additionally, Summary and Diffs
between the template and submission offer additional context, help-
ing the LLM understand the student’s changes and their overall
approach.

In contrast to other external AI tools such as ChatGPT, Athena
is integrated directly into Artemis and has direct access to every
relevant context information, providing immediate feedback to
students without requiring manual input. With Athena in place,
students do not need to switch between different windows and
do not need to copy-paste their solution or the problem statement
into other tools. Athena is also designed in a way that it provides

Direct Automated Feedback Delivery for Student Submissions based on LLMs FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

didactically sensible feedback without giving away the solution,
which is crucial for educational purposes.

The structure and content of this prompt are designed to emulate
a human tutor’s approach, ensuring that the feedback is both rele-
vant and supportive of the student’s learning process. By providing
such detailed instructions and contextual information, the LLM can
generate feedback that is both useful and actionable for students.
You are an AI tutor for programming exercises at a prestigious university.

Problem statement
{problem_statement}

Task
Create non graded improvement suggestions for a student's programming
submission that a human tutor would recommend. Assume the tutor is not familiar
with the solution. The feedback must contain only the feedback the student can
learn from. Important: the answer you generate must not contain any solution
suggestions or contain corrected errors. Rather concentrate on incorrectly applied
principles or inconsistencies. Students can move some functionality to other files.
Students can deviate to some degree from the problem statement or book unless
they complete all tasks. Very important, the feedback must be balanced.

Style
1. Constructive, 2. Specific, 3. Balanced, 4. Clear and Concise, 5. Actionable, 6.
Educational, 7. Contextual

It is strictly prohibited to include feedback that contradicts to the problem
statement.
No need to mention anything that is not explicitly in the template−>submission diff,
as it is out of student's control (e.g. exercise package name).

In git diff, lines marked with '−' were removed and with '+' were added by the
student.

The student will be reading your response, use you instead of them

Path: {submission_file_path}

File (with line numbers <number>: <line>):
{submission_file_content}

Summary of other files in the solution:
{summary}

The template to submission diff (only as reference):
{template_to_submission_diff}

Listing 1: Prompt template for generating feedback for
programming exercises.

For text and modeling exercises, the prompt follows a similar struc-
ture but is tailored to the characteristics and requirements of each
exercise type to ensure relevant and pedagogically sound feedback.

4.2 Architecture
Athena is deployed in production alongside the learning platform
Artemis, which serves up to 2000 students per course. Consequently,
the reference implementationmust satisfy additional non-functional
requirements such as performance, scalability, maintainability, and
usability. To meet these requirements and to support feedback
generation for multiple exercise types while allowing for future
extensibility, we adopted a modular architecture, as illustrated in
Figure 3.

The Module Manager handles all incoming requests, verifies au-
thorization, and forwards them to the appropriate modules. The
ProgrammingLLM module manages programming exercises and ex-
ecutes the three-stage DAFeeD process, which includes formatting,
predicting, and parsing. Similarly, the TextLLM and ModelingLLM

FeedbackSystem
API

Learning
Management System

FeedbackSystem

TextLLM

ProgrammingLLMModule Manager Large
Language Model

ModelingLLM

Figure 3: UML component diagram showing the top-level
architecture of the reference implementation.

module are optimized for text and modeling exercises, respectively,
and follow the same process.

Athena’s system design is independent of any specific learning
management system (LMS) as it provides a REST API, documented
using the OpenAPI standard1. This independence allows Athena
to be integrated with various LMS platforms, such as Moodle2,
bringing the benefits of DAFeeD to more universities and students.

Athena currently connects to OpenAI models hosted in a private
Azure cloud to ensure that student data is not used for training
models, maintaining privacy. Additionally, the system can be con-
figured to use open-source models like Llama3 or Mistral4, either
self-hosted or cloud-based.

To meet performance and scalability requirements, Athena and
its modules are deployed within a Kubernetes cluster5. Kubernetes,
in conjunction with Athena’s modular architecture, allows the sys-
tem to scale each module independently. For example, additional
instances of the programming module can be instantiated when
a new programming exercise is released to handle the increased
load. Furthermore, Kubernetes provides out-of-the-box load balanc-
ing to distribute the load between multiple module instances and
self-healing capabilities, ensuring that if a module crashes, it gets
automatically restarted.

5 Evaluation
In this section, we outline themethodology employed to validate the
effectiveness of the proposed DAFeeD approach including the refer-
ence implementation Athena. The conducted evaluation represents
the treatment validation phase of the design science methodology
proposed by Wieringa [36]. For this phase, we first evaluated the
proposed solution — DAFeeD — in a controlled environment fol-
lowed by a field study. The collected data is then utilized for the
refinement and improvement of the solution.

We begin by describing the study design and the results. Subse-
quently, we outline the limitations of the evaluation and discuss
the implications of the findings.

5.1 Study Design
The evaluation of the DAFeeD approach was conducted in two
distinct stages to ensure a comprehensive assessment of its effec-
tiveness. The first stage involved a controlled lab experiment where
selected students interacted with the system and subsequently pro-
vided their perceptions through a structured survey. This stage
aimed to capture initial user impressions and identify potential
1https://www.openapis.org
2https://moodle.org
3https://llama.meta.com
4https://mistral.ai
5https://kubernetes.io

https://www.openapis.org
https://moodle.org
https://llama.meta.com
https://mistral.ai
https://kubernetes.io

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Maximilian Sölch, Felix T.J. Dietrich, and Stephan Krusche

usability issues. In the second stage, DAFeeD and its reference
implementation, Athena, were deployed in an advanced software
engineering course on design patterns. During this stage, quantita-
tive data was collected to evaluate both student performance and
system effectiveness in a real-world educational setting.

For the first stage, we designed the “Code Review” Java pro-
gramming exercise, a past introduction to software engineering
homework assignment, to simulate a real-world scenario where stu-
dents review and improve existing code. The exercise included tasks
such as improving Java classes by following good coding practices,
refactoring duplicated code using the template method design pat-
tern, catching edge cases in functions, and implementing forgotten
methods in the service package. We enabled Athena for this exer-
cise, utilizing OpenAI’s GPT-4 Turbo with a temperature setting
of 0 to ensure deterministic and consistent feedback generation,
reducing randomness and the potential for hallucinations.

We invited 20 participants from current courses at the university
via direct messages, including undergraduate and graduate students
from various disciplines like computer science, information systems,
and games engineering. Participants received a two-page participa-
tion manual and tested the new feedback feature on Artemis in a
controlled university environment. The evaluation lasted around
45 minutes, focusing on understanding the feedback process rather
than completing the exercise. Participants followed a structured
procedure, illustrated in Figure 4. They started by thoroughly read-
ing the participation manual. Next, they prepared their IDE and
accessed the exercise on Artemis. They then worked on the exer-
cise, committed and pushed their code, and requested AI feedback
iteratively. After reviewing and acting on the AI-provided feedback,
they refined their solutions until they had a good understanding of
the feedback process.

Study Participant

Submit Solution

Refine Solution

no
yes Review Feedback

Good understanding of feedback
process?

Request Automatic
Feedback

Fill out Survey

Read Participation
Manual

Figure 4: UML activity diagram illustrating the study proce-
dure from a participant’s perspective.

Following this hands-on experience, participants were asked to
complete a survey hosted on the community version of the open-
source survey tool LimeSurvey6. This survey aimed to gather their
opinions on direct automated feedback and collect feedback on
their overall experience with the feature. The study employed a
mixed methods approach, combining quantitative and qualitative
data collection methods.

All survey questions, except for the introductory demographic
queries and five final voluntary free-text responses, employed a
5-point Likert scale [2] ranging from “strongly agree” to “strongly
disagree” and were mandatory. The survey questions mapped to
the research questions as follows:
6https://www.limesurvey.org

RQ1 Comfort with Feedback Source
Q1 I feel more comfortable requesting direct automated feed-

back than feedback from a human tutor.
Q2 I am likely to request feedback more frequently when using

direct automated feedback than feedback frommy course
professor.

Q3 I find receiving direct automated feedback less intimidating
than receiving feedback from a human tutor.

Q4 I feel that requesting direct automated feedback is more
convenient than arranging a meeting with a human tutor.

RQ2 Perceived Effectiveness
Q5 The direct automated feedback helps me understand my

mistakes.
Q6 The direct automated feedback is more effective than one-

time feedback.
Q7 The direct automated feedback has significantly improved

the quality of my programming assignment.
Q8 The direct automated feedback is a helpful addition to the

automatic test case results.
Q9 I feel that having access to direct automated feedback con-

tinuously helps me more than arranging a meeting with
a human tutor.

RQ3 Usability and Helpfulness
Q10 It is easy to receive direct automated feedback on my pro-

gramming assignments.
Q11 I would rather use the direct automated feedback integrated

into Artemis than use an external AI tool for getting
feedback.

Q12 I find the direct automated feedback helpful in improving
my programming skills.

Q13 I am satisfied with the overall performance of the direct
automated feedback.

Following the initial lab experiment and survey, the second stage
of the evaluation involved deploying Athena in the Software Design
Patterns course, an advanced software engineering lecture with
more than 500 active bachelor’s and master’s students. This stage
aimed to assess the system’s performance and scalability in a real-
world educational setting. The deployment allowed for an in-depth
investigation of the system’s impact on student performance (RQ4)
and how it compares to human feedback (RQ5).

Athena, configured with OpenAI’s GPT-4o LLM, was enabled for
two exercises, a modeling exercise and a text exercise. In the text
exercise, students had to explain the difference between the strategy
and the bridge design pattern, and could achieve a maximum of 4
points. The modeling exercise required students to create a UML
class diagram of a car rental system and was worth 7 points.

Students could submit their solutions and iteratively request
automated feedback to improve their work. After the exercises’
deadline, which was one week after the release, all submissions
were assessed by human tutors to determine the final scores. Based
on the usage data collected during this stage, we analyzed student
improvement over multiple submission iterations and also com-
pared the feedback scores from Athena against the human tutors’
assessments.

https://www.limesurvey.org

Direct Automated Feedback Delivery for Student Submissions based on LLMs FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

5.2 Results
In the following paragraphs, we present the results, starting with
stage one, the controlled lab experiment, and then moving on to
stage two, the deployment in the advanced software engineering
course. The answers to each of the Likert scale questions are visu-
alized in Figure 5.

Comfort (Q1)

Frequency (Q2)

Less Intimidation (Q3)

Convenience (Q4)

Understanding Mistakes (Q5)

Effectiveness (Q6)

Quality Improvement (Q7)

Addition to Test Cases (Q8)

Continuous Help (Q9)

Ease of Use (Q10)

Preference (Q11)

Skill Improvement (Q12)

Overall Satisfaction (Q13)

10%

10%

10%

5%

5%

10%

10%

10%

10%

5%

20%

5%

15%

25%

25%

10%

20%

10%

40%

10%

65%

35%

50%

40%

50%

35%

30%

35%

45%

70%

90%

40%

90%

25%

60%

20%

55%

25%

65%

40%

35%

35%

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 5: Distribution of survey responses to Likert scale
questions.

Comfort levels in requesting feedback showed that 90% of stu-
dents feel more comfortable requesting direct automated feedback
from Artemis than feedback from a human tutor, with 10% neutral
(Q1). For Q2, 100% of students noted that they are likely to request
feedback more frequently when using direct automated feedback
than feedback from their course professor. Receiving feedback from
Artemis was found to be less intimidating than from a human tutor
by 80% of students, with 10% neutral and 10% disagreeing (Q3).
Convenience in requesting feedback showed that 100% of students
feel that requesting direct automated feedback is more convenient
than arranging a meeting with a human tutor (Q4).

In terms of understanding mistakes, 90% of students believed
that the direct automated feedback provided by Artemis helps them
understand their mistakes, with 10% neutral (Q5). The effectiveness
of the feedback was highlighted by 95% of students who found that
the direct automated feedback is more effective than one-time feed-
back, with 5% neutral (Q6). Regarding the quality of assignments,
70% of students observed that DAFeeD has significantly improved
the quality of their programming assignments, with 20% neutral
and 10% disagreeing (Q7). For Q8, 95% of students felt that the direct
automated feedback is a helpful addition to the automatic test case
results, with 5% neutral. Continuous access to feedback was found
to be more beneficial than arranging meetings with a tutor by 75%
of students, with 15% neutral and 10% disagreeing (Q9).

Ease of receiving feedback was highly rated, with 100% of stu-
dents confirming that it is easy to receive direct automated feed-
back on their programming assignments (Q10). Furthermore, 70%
of students preferred using DAFeeD integrated into Artemis over
using an external AI tool for getting feedback, with 25% neutral
and 5% disagreeing (Q11). In terms of skill improvement, 70% of
students agreed that they find the direct automated feedback help-
ful in improving their programming skills, with 25% neutral and
5% disagreeing (Q12). Lastly, 80% of students were satisfied with

the overall performance of DAFeeD, with 10% neutral and 10%
disagreeing (Q13).

The responses to the five voluntary free text questions highlight
several themes. Many students appreciated the immediate avail-
ability of feedback, which allowed for prompt corrections without
waiting for manual review. However, some respondents suggested
improvements such as better categorization of feedback, more de-
tailed explanations of errors, and prioritization of critical issues.
The feedback was generally found to be relevant and useful in ad-
dressing obvious mistakes and improving code quality. Students
expressed a preference for feedback that clearly identified mistakes
and provided specific guidance on how to correct them, along with
suggestions for improvement. Some challenges included under-
standing certain automated feedback messages and occasional false
positives or negatives in error detection.

For stage two we first analyzed the distribution of scores across
submission attempts for the modeling and text exercises, as shown
in Figure 6. Since students were not obliged to request automatic
feedback, the sample sizes differ across submission attempts. The
results indicate an overall improvement in scores with subsequent
submission attempts.

1
n=440

2
n=209

3
n=79

4
n=48

5
n=29

6
n=23

7
n=18

8
n=15

9
n=13

10
n=9

11
n=1

Submission Attempt

0%

20%

40%

60%

80%

100%

Sc
or

e

Mean Score

(a) Score distribution for the modeling exercise.

1
n=434

2
n=190

3
n=43

4
n=11

5
n=3

6
n=1

Submission Attempt

0%

20%

40%

60%

80%

100%

Sc
or

e

Mean Score

(b) Score distribution for the text exercise.

Figure 6: Distribution of Athena’s scores across submission
attempts.

In the modeling exercise (Figure 6a), the average scores increased
steadily across multiple submission attempts. The initial average
score was 44% in the first attempt, rising to 61% by the sixth attempt.
However, a slight decline was observed in the seventh attempt,

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Maximilian Sölch, Felix T.J. Dietrich, and Stephan Krusche

where the score dropped to 59%. The scores then showed a peak of
65% in the ninth attempt. After this peak, the scores declined down
to 57% in the eleventh attempt.

For the text exercise (Figure 6b), the average scores exhibited a
more consistent upward trajectory. The initial average score of 64%
in the first attempt increased significantly to 82% by the second
attempt and further improved to 88% by the third attempt. Despite a
minor decline to 80% in the fourth attempt, subsequent submissions
saw an upward trend from 83% in the fifth to 100% in the sixth
attempt.

We analyzed the score differences between Athena and human
tutors for both exercises, as illustrated in Figure 7. To ensure a
fair comparison, only the latest student submissions that received
feedback from Athena and remained unchanged until the exer-
cise deadline were considered. This approach guarantees that both
Athena and human tutors assessed identical versions of student
submissions.

The score differences were computed by subtracting Athena’s
assigned score from the human tutor’s score, where negative val-
ues indicate instances in which the human tutor assigned a lower
score than Athena. To facilitate the visualization of a 1-point score
deviation, the data was grouped into equal-sized intervals based
on the total achievable points for each exercise, with each interval
representing 15% (1/7) of the total score for the modeling exercise
and 25% (1/4) for the text exercise.

The analysis of score differences between Athena and the human
tutors revealed distinct trends for the modeling and text exercises.
For the modeling exercise, Athena generally assigned lower scores
compared to the human tutors, as visualized in Figure 7a. 29% of
submissions received scores that were between 15% and 30% higher
when graded by the human tutors. Additionally, 18% had smaller
underestimations, with differences ranging from 0% to 15%. In con-
trast, Athena provided higher scores than the human tutors for
27% of submissions, with differences ranging from -15% to 0%. A
moderate overestimation was observed in five submissions (9%),
with score differences between -30% and -15%, while extreme over-
estimations were rare (2%) falling within the -45% to -30% range.
7% of submissions received identical scores.

For the text exercise, Athena consistently provided higher scores
than the human tutors, as depicted in Figure 7b. The majority of
submissions (39%) fell within the range of -25% to 0%, indicating that
Athena assigned slightly higher scores. A significant portion (24%)
showed more considerable overestimations within the -50% to -25%
range, while 6% experienced substantial overestimations ranging
from -75% to -50%. In contrast, identical scores were observed for 51
submissions (27%). Cases where Athena assigned lower scores than
the human tutors were infrequent, with only 4% showing positive
differences, and no submissions exceeded a difference of 50%.

5.3 Findings
The responses to RQ1 reveal a strong level of comfort for request-
ing automated feedback compared to traditional human feedback
channels. Students stated they feel more comfortable requesting
automated feedback than from human tutors and were likely to
request automated feedback more frequently than from their course
professors. Requesting automated feedback was perceived as less

-60
% to

 -4
5%

-45
% to

 -3
0%

-30
% to

 -1
5%

-15
% to

 0% 0%

0%
 to

 15
%

15
% to

 30
%

30
% to

 45
%

45
% to

 60
%

Score Differences

0%

5%

10%

15%

20%

25%

30%
n = 55

(a) Score differences for the modeling exercise.

-75
% to

 -5
0%

-50
% to

 -2
5%

-25
% to

 0% 0%

0%
 to

 25
%

25
% to

 50
%

50
% to

 75
%

Score Differences

0%

5%

10%

15%

20%

25%

30%

35%

40% n = 191

(b) Score differences for the text exercise.

Figure 7: Distribution of score differences between Athena
and a human tutor. Negative values indicate a lower score
from the tutor.

intimidating for most of the participants and all of them stated it
is more convenient than arranging meetings with a human tutor.
These findings highlight the effectiveness of automated feedback in
providing a more comfortable and accessible feedback mechanism
for students.

Main Findings for RQ1: Students feel more comfortable
requesting automated feedback than human feedback. They
are likely to request automated feedback more frequently
and find it less intimidating and more convenient than
arranging meetings with a human tutor.

The responses to RQ2 indicate that students think automated
feedback is highly effective in helping them understand and im-
prove their programming assignments. Students reported that the
feedback helped them understand their mistakes and found it more
effective than receiving only one-time feedback for their submission.
The majority reported that the feedback significantly improved the
quality of their programming assignments, and all participants
stated that automatic feedback is a helpful addition to automatic
test case results generated by Artemis. In addition, most participants
saw continuous access to automated feedback as more beneficial
than arranging meetings with a tutor. These findings suggest that

Direct Automated Feedback Delivery for Student Submissions based on LLMs FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

automated feedback not only aids in error identification but also
significantly enhances the overall quality of student assignments.

Main Findings for RQ2: Students perceive automated
feedback as highly effective in helping them understand
and improve their programming assignments. The feedback
helps them understand their mistakes, improves the quality
of their assignments, and is a helpful addition to automatic
test case results.

The responses to RQ3 demonstrate the ease of receiving feed-
back and overall satisfaction with DAFeeD’s feedback process and
its reference implementation. Students found it easy to receive
feedback on their programming assignments. A large number of
participants preferred using the feedback integrated into Artemis
than copy their submission and relevant context information over
to an external AI tool. Most participants also deemed the feedback
helpful in improving their programming skills. In regard to the
overall performance of DAFeeD, the majority of students expressed
high satisfaction with the system.

Main Findings for RQ3: Students find it easy to receive
feedback on their programming assignments and are satis-
fied with the overall performance of DAFeeD and its ref-
erence implementation. There are some suggestions for
improvements, such as better categorization of feedback,
more detailed explanations of errors, and prioritization of
critical issues.

The analysis of the score distributions across submission at-
tempts for the modeling and text exercises revealed an overall
improvement in student performance over time. Average scores
increased steadily during the initial attempts, followed by a slight
decline in later attempts. This decline can be attributed to students
who achieved high scores early being less likely to submit further,
leaving primarily lower-scoring students to continue. The decreas-
ing number of submissions over time supports this explanation,
indicating that students whomet their goals early were less inclined
to make additional attempts. The observed improvements suggest
that the direct automated feedback provided by Athena effectively
supports student learning by guiding them through an iterative
improvement process.

Main Findings for RQ4: Students improved their per-
formance across multiple submission attempts with the
feedback provided by Athena. The steady increase in scores
indicates the effectiveness of automated feedback in facili-
tating learning.

The comparison of scores between Athena and human tutors for
the modeling and text exercises revealed distinct trends. In the mod-
eling exercise, Athena generally assigned lower scores compared
to human tutors, suggesting a more conservative grading approach
or limitations in the system’s ability to fully interpret complex sub-
missions. Conversely, in the text exercise, Athena tended to provide

higher scores compared to human tutors. Despite these trends, the
analysis showed that over 52% of modeling submissions and more
than 69% of text submissions exhibited either no difference or a
1-point difference between Athena and human tutors. These re-
sults suggest that the quality of the feedback provided by Athena is
comparable to that of human tutors, although some discrepancies
remain and present opportunities for future improvement. Further-
more, we noticed the critical role of well-defined grading criteria in
enhancing the quality of automated feedback. Similar to manual as-
sessment by human tutors, clear and course-specific grading criteria
are essential for ensuring consistency and relevance in automated
evaluations.

Main Findings for RQ5: Athena generally assigned lower
scores in modeling exercises and higher scores in text exer-
cises. Over half of the submissions showed minimal score
differences, indicating comparable feedback quality.

5.4 Discussion
Overall, students received DAFeeD’s reference implementation
Athena integrated into Artemis positively, indicating its effective-
ness in enhancing their skills. The iterative submission process,
supported by automated feedback, allowed students to refine their
work progressively, leading to measurable improvements in their
performance across multiple submission attempts.

The findings validate the role of automated feedback in foster-
ing an interactive learning environment. Students reported feeling
more comfortable requesting automated feedback than human feed-
back, highlighting the system’s convenience and accessibility. This
interactive aspect of learning, facilitated by timely and continuous
feedback, helps students develop critical problem-solving skills and
deepen their understanding of programming concepts.

Despite the overall positive reception, there is room for improv-
ing the quality of the feedback provided. The comparative analysis
of Athena and human tutor scores highlighted certain discrepan-
cies, with the system generally assigning lower scores in modeling
exercises and higher scores in text exercises. While over half of
the submissions showed only minimal differences between the au-
tomated and human evaluations, the remaining inconsistencies
suggest that refinements are needed to better align the automated
scoring with human judgment. Here it is important to note that
while tutor assessments are treated as ground truth data in this
analysis, but human grading is not infallible. The approach pre-
sented in this paper primarily supports the concept of formative
assessment and is particularly effective when implemented fully
automatically, especially in contexts where summative assessment
is not the primary focus.

While students found the feedback helpful in understanding
their mistakes and improving their assignments, we need to further
refine it to enhance its precision and relevance. Incorporating more
advanced AI techniques, such as Chain-of-Thought [35], ReAct
[39], Retrieval-Augmented Generation (RAG) [4, 13], could address
these issues, offering more tailored and context-specific guidance
to students. Specifically, a RAG approach could enhance Athena by
retrieving relevant course materials, such as lecture slides, course

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Maximilian Sölch, Felix T.J. Dietrich, and Stephan Krusche

discussions, and past feedback examples, to provide more contex-
tually accurate and tailored responses that align with the course’s
learning objectives, offering students clearer explanations and ac-
tionable suggestions for improvement.

This work aligns with findings from other studies, highlighting
the importance of timely and continuous feedback in education [12,
32]. Additionally, we believe that direct automated feedback should
complement, rather than substitute, traditional human feedback.
The convenience and accessibility of automated feedback are clear
advantages, yet the nuanced insights that human tutors provide
remain irreplaceable, including emotional support and empathy.

As the study is intended as the treatment validation stage for
the proposed feedback process and should also provide important
insights into the usability of the reference implementation, we
assume that the results correctly reflect the tendency despite the
rather small sample size for the controlled lab experiment. Nielsen
[30] has shown that smaller, iterative tests can reveal the majority
of usability issues, making such an approach both practical and
effective.

We acknowledge that different challenges exist when using AI
in education, and we are aware of their potential to negatively
influence the learning experience of the diverse student body [19].
First, the competent use of AI must be explicitly taught to both
educators and students to ensure effective and ethical utilization.
Addressing the issue of AI hallucinations, a RAG approach can
be employed to enhance accuracy [13]. To mitigate over-reliance
on AI, it is crucial to encourage students to independently solve
certain problems, fostering critical thinking and problem-solving
skills. Bias in AI can be reduced by using models that are designed
to minimize prejudices, ensuring fairness in feedback. Additionally,
privacy and cost concerns can be alleviated by deploying locally
trained open-source models, which offer greater control over data
and reduce dependency on commercial AI solutions. These mea-
sures collectively promote a balanced and responsible integration
of AI in the educational process.

In conclusion, DAFeeD shows significant potential in improving
computing education. By addressing the areas identified for im-
provement and continuing to refine the system, we can harness the
full benefits of automated feedback to support and enhance student
learning.

5.5 Limitations
We follow the categorization framework proposed by Runeson and
Höst [31] to outline the limitations of the conducted evaluation,
addressing potential threats to internal, external, and construct
validity:

Internal Validity: This study may be compromised by using self-
reported survey data, which can introduce biases. Participants’
perceptions may be influenced by their individual attitudes or vary-
ing levels of familiarity with programming concepts, leading to
potential inaccuracies. Additionally, the participants’ perceived
effectiveness does not necessarily correspond to objective effective-
ness. The assumption that human tutor assessments are entirely
accurate may affect the validity of our findings, as tutors can intro-
duce subjective biases or errors in their evaluations.

External Validity: Threats to external validity arise from the
specific context of this study. Conducting the research exclusively
at a single university and with students from computer science,
information systems, and similar programs restricts the diversity
of the sample. This narrow focus may limit the applicability of the
findings to other educational settings or student populations. In
addition, the small sample size of the controlled lab experiment
may also limit the generalizability of some findings.

Construct Validity: The survey questions designed to evaluate
’perceived effectiveness’ and ’comfort with feedback source’ may
not fully encompass the breadth of these constructs. Factors such
as prior experiences and personal preferences, which the survey
does not account for, could influence participants’ responses and
perceptions. The use of a specific sample exercise to evaluate the
automated feedback process may align more closely with some
students’ prior experiences or learning styles, introducing bias into
the results.

6 Conclusion
The main contributions of this paper include the introduction of
DAFeeD, a direct automated feedback delivery system, and the
development of its reference implementation, Athena, which inte-
grates DAFeeD into the learning platform Artemis. In addition, we
conducted a comprehensive evaluation to demonstrate the system’s
effectiveness in improving student performance and engagement
through iterative feedback. DAFeeD enables the interactive learn-
ing process by providing students with immediate, context-specific
feedback on their submissions. The implementation of DAFeeD
demonstrates the feasibility and advantages of incorporating auto-
mated feedback systems into computing education. For educators,
this can alleviate the heavy workload associated with providing
individualized feedback, allowing them to focus more on instruc-
tional design and student support. For students, the evaluation of
DAFeeD showed that they perceive the automated feedback as effec-
tive, helpful, and easy to use, and that it enhances their engagement
and motivation.

Future work includes enhancing the visualization of feedback
by grouping and color-coding feedback items to differentiate be-
tween critical feedback, suggestions for improvement, and positive
comments. A priority will be further improving the quality of the
feedback provided. To support this, we plan an expert evaluation
with human raters and will compare their agreement to Athena’s
to assess how closely it aligns with human judgment. Integrating
direct automated feedback into other courses and universities, and
empirically evaluating its effects on learning experience, perfor-
mance, and motivation is another crucial step. Further, we plan to
consider potential issues with AI in education, such as over-reliance
and ethical implications in the learning process.

A Acknowledgments
This paper includes sections revised with the help of ChatGPT to
enhance clarity and readability. We have carefully reviewed all text
produced by AI. The datasets for the evaluation discussed in this
paper are available on OSF7.

7https://osf.io/p9szv/?view_only=3847c6a856df4ad6ab0716f9ebb95fb0

https://osf.io/p9szv/?view_only=3847c6a856df4ad6ab0716f9ebb95fb0

Direct Automated Feedback Delivery for Student Submissions based on LLMs FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

References
[1] Patricia A. Alexander and P. Karen Murphy. 1998. Profiling the Differences in

Students’ Knowledge, Interest, and Strategic Processing. Journal of Educational
Psychology 90, 3 (1998), 435–447.

[2] I Elaine Allen and Christopher A Seaman. 2007. Likert Scales and Data Analyses.
Quality progress 40, 7 (2007), 64–65.

[3] Xavier Amatriain. 2024. Prompt Design and Engineering: Introduction and
Advanced Methods. arXiv:2401.14423

[4] Pasquale Ardimento, Mario Luca Bernardi, and Marta Cimitile. 2024. Teaching
UML Using a RAG-based LLM. In 2024 International Joint Conference on Neural
Networks (IJCNN). 1–8.

[5] Pasquale Ardimento, Mario Luca Bernardi, Marta Cimitile, and Michele Scalera.
2024. A RAG-based Feedback Tool to Augment UML Class Diagram Learning.
In Proceedings of the ACM/IEEE 27th International Conference on Model Driven
Engineering Languages and Systems (MODELS Companion). Association for Com-
puting Machinery, 26–30.

[6] Imen Azaiz, Natalie Kiesler, and Sven Strickroth. 2024. Feedback-Generation for
Programming Exercises With GPT-4. In Proceedings of the 2024 on Innovation
and Technology in Computer Science Education V. 1 (ITiCSE). Association for
Computing Machinery, 31–37.

[7] Brett A. Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2023. Programming Is Hard - Or at Least It
Used to Be: Educational Opportunities and Challenges of AI Code Generation. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education
V. 1 (SIGCSE). Association for Computing Machinery, 500–506.

[8] Jan Philip Bernius, Stephan Krusche, and Bernd Bruegge. 2021. A Machine Learn-
ing Approach for Suggesting Feedback in Textual Exercises in Large Courses. In
Proceedings of the Eighth ACM Conference on Learning @ Scale (L@S). Association
for Computing Machinery, 173–182.

[9] Jan Philip Bernius, Stephan Krusche, and Bernd Bruegge. 2022. Machine Learning
Based Feedback on Textual Student Answers in Large Courses. Computers and
Education: Artificial Intelligence 3 (2022), 100081.

[10] Zana Buçinca, Maja Barbara Malaya, and Krzysztof Z. Gajos. 2021. To Trust or
to Think: Cognitive Forcing Functions Can Reduce Overreliance on AI in AI-
assisted Decision-making. Proc. ACM Hum.-Comput. Interact. 5, CSCW1 (2021),
188:1–188:21.

[11] Javier Cámara, Javier Troya, Lola Burgueño, and Antonio Vallecillo. 2023. On
the Assessment of Generative AI in Modeling Tasks: An Experience Report with
ChatGPT and UML. Software and Systems Modeling 22, 3 (2023), 781–793.

[12] Phillip Dawson, Michael Henderson, Paige Mahoney, Michael Phillips, Tracii
Ryan, David Boud, and Elizabeth Molloy. 2019. What Makes for Effective Feed-
back: Staff and Student Perspectives. Assessment & Evaluation in Higher Education
44, 1 (2019), 25–36.

[13] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Ji-
awei Sun, MengWang, and HaofenWang. 2024. Retrieval-Augmented Generation
for Large Language Models: A Survey. arXiv:2312.10997

[14] Marcelo Guerra Hahn, Silvia Margarita Baldiris Navarro, Luis De La
Fuente Valentin, and Daniel Burgos. 2021. A Systematic Review of the Effects of
Automatic Scoring and Automatic Feedback in Educational Settings. IEEE Access
9 (2021), 108190–108198.

[15] Michael Henderson, Tracii Ryan, and Michael Phillips. 2019. The Challenges of
Feedback in Higher Education. Assessment & Evaluation in Higher Education 44,
8 (2019), 1237–1252.

[16] Richard Higgins, Peter Hartley, and Alan Skelton. 2002. The Conscientious
Consumer: Reconsidering the Role of Assessment Feedback in Student Learning.
Studies in Higher Education 27, 1 (2002), 53–64.

[17] Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian
Wang, Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting
Liu. 2025. A Survey on Hallucination in Large Language Models: Principles,
Taxonomy, Challenges, and Open Questions. ACM Trans. Inf. Syst. 43, 2 (2025),
42:1–42:55.

[18] Alastair Irons. 2007. Enhancing Learning through Formative Assessment and
Feedback. Routledge.

[19] Enkelejda Kasneci, Kathrin Sessler, Stefan Küchemann, Maria Bannert, Daryna
Dementieva, Frank Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke
Hüllermeier, Stephan Krusche, Gitta Kutyniok, Tilman Michaeli, Claudia Nerdel,
Jürgen Pfeffer, Oleksandra Poquet, Michael Sailer, Albrecht Schmidt, Tina Seidel,
Matthias Stadler, JochenWeller, Jochen Kuhn, and Gjergji Kasneci. 2023. ChatGPT
for Good? On Opportunities and Challenges of Large Language Models for
Education. Learning and Individual Differences 103 (2023), 102274.

[20] Majeed Kazemitabaar, Xinying Hou, Austin Henley, Barbara Jane Ericson, David
Weintrop, and Tovi Grossman. 2024. How Novices Use LLM-based Code Gen-
erators to Solve CS1 Coding Tasks in a Self-Paced Learning Environment. In
Proceedings of the 23rd Koli Calling International Conference on Computing Educa-
tion Research (Koli Calling). Association for Computing Machinery, 1–12.

[21] Hieke Keuning, Johan Jeuring, and BastiaanHeeren. 2018. A Systematic Literature
Review of Automated Feedback Generation for Programming Exercises. ACM
Transactions on Computing Education 19, 1, Article 3 (2018).

[22] Natalie Kiesler, Dominic Lohr, and Hieke Keuning. 2023. Exploring the Potential
of Large Language Models to Generate Formative Programming Feedback. In
2023 IEEE Frontiers in Education Conference (FIE). 1–5.

[23] Stephan Krusche and Andreas Seitz. 2018. ArTEMiS: An Automatic Assessment
Management System for Interactive Learning. In Proceedings of the 49th ACM
Technical Symposium on Computer Science Education. 284–289.

[24] Stephan Krusche, Andreas Seitz, Jürgen Börstler, and Bernd Bruegge. 2017. Inter-
active Learning: Increasing Student Participation through Shorter Exercise Cycles.
In Proceedings of the Nineteenth Australasian Computing Education Conference
(ACE). Association for Computing Machinery, 17–26.

[25] Juho Leinonen, Paul Denny, and Jacqueline Whalley. 2022. A Comparison of
Immediate and Scheduled Feedback in Introductory Programming Projects. In
Proceedings of the 53rd ACM Technical Symposium on Computer Science Education
- Volume 1 (SIGCSE, Vol. 1). Association for Computing Machinery, 885–891.

[26] Mark Liffiton, Brad E Sheese, Jaromir Savelka, and Paul Denny. 2024. Code-
Help: Using Large Language Models with Guardrails for Scalable Support in
Programming Classes. In Proceedings of the 23rd Koli Calling International Confer-
ence on Computing Education Research (Koli Calling). Association for Computing
Machinery, 1–11.

[27] Yi Liu, Gelei Deng, Zhengzi Xu, Yuekang Li, Yaowen Zheng, Ying Zhang, Lida
Zhao, Tianwei Zhang, Kailong Wang, and Yang Liu. 2024. Jailbreaking ChatGPT
via Prompt Engineering: An Empirical Study. arXiv:2305.13860

[28] Samiha Marwan, Ge Gao, Susan Fisk, Thomas W. Price, and Tiffany Barnes. 2020.
Adaptive Immediate Feedback Can Improve Novice Programming Engagement
and Intention to Persist in Computer Science. In Proceedings of the 2020 ACM
Conference on International Computing Education Research (ICER). Association
for Computing Machinery, 194–203.

[29] Ha Nguyen and Vicki Allan. 2024. Using GPT-4 to Provide Tiered, Formative
Code Feedback. In Proceedings of the 55th ACM Technical Symposium on Computer
Science Education V. 1 (SIGCSE). Association for Computing Machinery, 958–964.

[30] Jakob Nielsen. 2000. Why You Only Need to Test with 5 Users.
[31] Per Runeson and Martin Höst. 2009. Guidelines for Conducting and Reporting

Case Study Research in Software Engineering. Empirical Software Engineering
14, 2 (2009), 131–164.

[32] Valerie J. Shute. 2008. Focus on Formative Feedback. Review of Educational
Research 78, 1 (2008), 153–189.

[33] H. Sondergaard and D. Thomas. 2004. Effective Feedback to Small and Large
Classes. In 34th Annual Frontiers in Education, 2004. FIE 2004. IEEE, 540–545.

[34] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian
Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, and William
Fedus. 2022. Emergent Abilities of Large Language Models. Transactions on
Machine Learning Research (2022).

[35] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei
Xia, Ed Chi, Quoc V. Le, and Denny Zhou. 2022. Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models. Advances in Neural Information
Processing Systems 35 (2022), 24824–24837.

[36] Roel J. Wieringa. 2014. Design Science Methodology for Information Systems and
Software Engineering. Springer Berlin Heidelberg.

[37] Juliette Woodrow, Ali Malik, and Chris Piech. 2024. AI Teaches the Art of
Elegant Coding: Timely, Fair, and Helpful Style Feedback in a Global Course. In
Proceedings of the 55th ACM Technical Symposium on Computer Science Education
V. 1 (SIGCSE). Association for Computing Machinery, 1442–1448.

[38] Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming
Jiang, Shaochen Zhong, Bing Yin, and Xia Hu. 2024. Harnessing the Power of
LLMs in Practice: A Survey on ChatGPT and Beyond. ACM Trans. Knowl. Discov.
Data 18, 6 (2024), 160:1–160:32.

[39] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan,
and Yuan Cao. 2023. ReAct: Synergizing Reasoning and Acting in Language
Models. In The Eleventh International Conference on Learning Representations.

[40] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang,
Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang,
Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2023. A Survey of Large
Language Models. arXiv:2303.18223

https://arxiv.org/abs/2401.14423
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2305.13860
https://arxiv.org/abs/2303.18223

	Abstract
	1 Introduction
	2 Related Work
	3 Approach: Direct Automated Feedback Delivery (DAFeeD)
	4 Reference Implementation: Athena
	4.1 Feedback Generation
	4.2 Architecture

	5 Evaluation
	5.1 Study Design
	5.2 Results
	5.3 Findings
	5.4 Discussion
	5.5 Limitations

	6 Conclusion
	A Acknowledgments
	References

