Introduction to Programming using Interactive
Learning

1% Stephan Krusche
Technical University of Munich
krusche @tum.de

Abstract—Interactive learning has been highly successful in
computer science education, leading to improved planning and
execution of programming courses. This is accomplished through
the amalgamation of exercises equipped with real-time feedback
mechanisms, fostering an environment conducive to iterative per-
formance enhancement. Communication portals facilitate knowl-
edge sharing between students and instructors, while computer-
based exams alleviate the instructors’ workload.

This paper focuses on the implementation of interactive
learning in a programming course for first-year computer science
students. The course, attended by an aggregate of 70 students,
predominantly inexperienced in programming, is detailed, along
with the digital resources employed during its development, im-
plementation, and evaluation. This paper contributes to demon-
strating the effectiveness of this methodology which showcase
promising outcomes in a performance comparison between two
courses with varying student numbers. The propitious outcomes
emanating from this analysis undergird the proposition for
extending this interactive learning methodology to a broader
spectrum of computer science curricular offerings.

Index Terms—applied computing, learning management sys-
tems, education, learning management, learning success, online
exams

I. INTRODUCTION

Programming necessitates the practical application of
knowledge, and examples and exercises are vital for effective
cognitive skill acquisition [1]-[3]. However, creating and eval-
uating programming exercises that promote cognitive skills
and creativity can be time-consuming for instructors [4], [5].
Well-crafted examples contribute to better learning outcomes,
and individual feedback through formative assessment is cru-
cial for knowledge improvement [6], [7].

We have developed an interactive learning method to benefit
students in the first semester of a computer science bachelor
program, regardless of their prior programming knowledge.
This method incorporates a tool with various functionalities
to support both students and instructors in the learning and
evaluation process.

The methodology includes in-class exercises to familiarize
students with programming notation, group exercises in tu-
tor sessions to practice and discuss advanced programming
concepts, and homework exercises for independent skill de-
velopment. Individual feedback on homework assignments
enables students to assess their progress and enhance their
programming skills.

2" Jonnathan Berrezueta-Guzman
Technical University of Munich
s.berrezueta@tum.de

This methodology promotes continuous feedback and
problem-solving abilities alongside coding proficiency. En-
couraged by positive outcomes, we implemented this method-
ology in a second-semester course with a large number of
participants, achieving similarly promising results.

The paper is structured as follows: Section II covers related
work, Section III describes the interactive learning method and
tool support, Section IV presents a programming course that
implemented the method, Section V discusses its contribution,
and Section VI concludes the paper and suggests future work.

II. RELATED WORK

Programming is a dynamic and collaborative activity that
requires logical thinking and identifying conceptual issues [8].
In education, it is crucial to develop engaging and interactive
curricula [9]. Traditional approaches that separate content de-
livery from practice, such as lectures and exercises, often result
in knowledge gaps. Ebbinghaus’s forgetting curve suggests
that rapid learning is followed by rapid forgetting [10]. It
demonstrates that without practice, 40 % - 60 % of newly
acquired knowledge can be lost in the first 24 hours [11].

Pedagogical concepts like active learning, experiential
learning, blended learning, and interactive learning have
emerged to bridge the gap between content delivery and
practice [12]-[15]. Involving students in the learning process,
these approaches enhance information retention through en-
gagement, instructor observation, and critical reflection [10].
One such approach is Think-Pair-Share (TPS), where students
tackle a problem individually, then collaborate in small groups,
and ultimately share their ideas with the entire class [16].

Kothiyal and his colleagues conducted a study in a large
introductory programming course. They observed the student’s
engagement patterns during 10 weeks and 13 TPS activities
[17]. A 83 % students’ engagement rate was reported in the
end. The study [18] proposed the concept of interactive lec-
tures, that integrates teaching and exercises in short iterations.
This approach achieved a student engagement rate of 80 %.

Robinson and Carroll focus on the development and de-
ployment of an open-source online learning platform designed
for teaching and evaluating programming [19]. The results
indicated that students perceive real-time feedback as an
effective means of experimentation and self-directed learning.
From the perspective of the instructors, workload and required
effort for evaluation are reduced significantly.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

https://orcid.org/0000-0002-4552-644X
mailto:krusche@tum.de
https://orcid.org/0000-0001-5559-2056
mailto:s.berrezueta@tum.de
Santiago
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

David Shaffer introduced a platform designed for grading
and providing feedback during programming assignments [2].
Students can improve their programming skills, while instruc-
tors can create assignments that can be automatically graded.

Wang and Liang introduce an online system developed
for class management, assignment and exam creation, and
tracking class performance [20]. It enables instructors to
assess the overall class performance and identify individual
student difficulties. It provides detailed feedback for each
submission, allowing students to debug their code also. In the
case of syntax errors, the feedback includes comprehensive
compilation error messages and syntax hints. Likewise, for
logic errors, the feedback presents an example of the error.

Chaordic learning is as a self-organizing, adaptive, and non-
linear pedagogical methodology, primarily devised to catalyze
the innovative cognitive processes in learners [21]. Educators
employ an organized scaffold, extending mentorship and di-
rection, while concurrently incorporating a certain degree of
liberty to promote self-regulation and autonomous learning.
This educational approach thereby fosters an environment con-
ducive to the cultivation of innovation and creative thinking.

III. LEARNING METHOD

Interactive learning is an educational approach centered
around student interaction and based on the constructive
alignment philosophy [22].

This methodology minimizes the gap between teaching new
concepts and their practical application through active student
participation in the classroom. It incorporates creativity to
foster problem-solving and soft skills. Instructors engage in
short cycles of teaching and exercising concepts, providing
immediate and personalized feedback using tool support [23].
Each cycle comprises five activities within a lecture:

1) Theory: Introduce and explain a new concept.

2) Example: A concrete example to illustrate the concept.

3) Practice: Apply the new concept in an exercise.

4) Feedback: On students’ exercise submissions.

5) Reflection: Foster discussion among students.

A. Deepening the Learning Content

Interactive learning encompasses various types of exercises
(such as modeling exercises) beyond in-class activities [18],
[24]. Group exercises are conducted in smaller tutor sessions,
providing students with the opportunity to apply and practice
the taught concepts alongside their peers. On the other hand,
homework exercises with individual feedback enable students
to gauge their learning progress and refine their skills. The
presentation of solutions for group and homework exercises in
tutor sessions also enhances students’ communication skills.

B. Exercises

The learning method includes three types of exercises.

1. Short in-class exercise: During the lecture, students
engage in solving brief exercises that prompt the application
of the reviewed knowledge. Students have 5-10 minutes to at-
tempt the exercises independently. After this time, the instruc-
tor addresses any doubts and provides further clarification.

2. Group exercise: During the tutor sessions, students
tackle two medium-difficult exercises that offer immediate
feedback. Their solutions are presented by the students in
the session, allowing for explanation and discussion with their
peers and tutor. This collaborative approach helps solidify the
understanding of the concepts and prepares them for more
challenging exercises, such as homework.

3. Homework exercise: These exercises are designed to
be challenging, requiring students to independently apply the
knowledge gained from the lecture. These exercises typically
provide immediate feedback to facilitate continuous learning.
After the deadline, the solutions to the homework exercises are
presented in tutor sessions, allowing for in-depth discussions
and the resolution of any doubts.

C. Tool Support

Artemis is an open-source exercise system' that incorporates
features such as distributed version control and continuous
integration to support the automatic assessment of program-
ming exercises [25]. This enables efficient and streamlined
evaluation of student work in programming exercises.

Instructors can create exercises writing a problem statement
in Markdown in the web interface and configure three git
repositories: the template with starter code, the solution with
the correct implementation, and the test repository with the
tests used for auto-assessment and the individual feedback.
Additionally, Artemis sets up two build plans, one for the
template (to ensure it is assessed with 0 %) and one for the
solution (to ensure it is assessed with 100 %). One build plan
checks out the template (or solution) repository and the test
repository and executes all tests against the template, solution,
or student code. This process is better explained in Figure 1.

Instructor

. 3 Prepare
exercise
Start

System

Copy & configure
repository

Copy & configure
build plan

i Student

Clone
repository

Solve
exercise

Review results Build, test and Commit &
analyze code push solution
Review
feedback

Fig. 1. Simplified activity diagram for conducting programming exercises
with Artemis [25].

End

Students can see the problem statement and clone the
template repository and the template build plan. Each student
receives one individual repository and one build plan per
exercise. They can solve the exercise in their local IDE (e.g.

Thttps://github.com/Is1intum/Artemis

https://github.com/ls1intum/Artemis

IntelliJ) and then commit and push their solution. This triggers
their individual build plan to compile, build, test, and analyze
their code and provide feedback based on the instructor’s tests.
Students can review this individual feedback immediately and
adapt their solutions accordingly. Instructors optionally can
activate and configure static code analysis.

Artemis includes interactive and dynamic exercise instruc-
tions [25]. Figure 2 shows a screenshot of a problem statement
where correctly implemented tasks are marked in green oth-
erwise in red. This helps students to identify which parts of
the exercise they have already solved correctly and improves
the understanding of the source code.

Instructions >
v X X X X X X

Sorting with the Strategy Pattern

In this exercise, we want to implement sorting algorithms and choose them based on runtime specific variables.

Part 1: Sorting

First, we need to implement two sorting algorithms, in this case MergeSort and BubbleSort.
You have the following tasks:

1 @ Implement Bubble Sort 1 of 1 tests passing
Implement the method performSort(List<Date>) in the class BubbleSort. Make sure to follow the Bubble Sort
algorithm exactly.

2. ® Implement Merge Sort 0 of 1 tests passing
Implement the method performSort (List<Date>) in the class MergeSort. Make sure to follow the Merge Sort
algorithm exactly.

Fig. 2. User interface that shows a problem statement of an exercise with the
interactive feedback. It provides students with feedback based on test results
and static code analysis. Green indicates positive feedback, red indicates
unresolved tasks.

D. Assessment

Artemis provides 3 assessment types for exercises.

1. Automatic: The instructor writes test cases that run
for each submission either during (for in-class, group, and
homework exercises) or after the deadline (exam exercises).

2. Semi-automatic: Some implementations are partially
impossible to test automatically, e.g. graphical user interface
(GUI). In this case, the GUI part of the exercise should be
deployed and evaluated manually by the instructor.

3. Manual: When a programming exercise cannot be eval-
uated automatically, the instructors download the repositories
and review or debug the code submitted by students. This
evaluation process is double-blind, neither the student nor the
reviewer knows each other.

Students can submit a complaint and a second reviewer
answers and modifies the grade if necessary. Students can also
submit “more feedback requests” and the same reviewer will
provide an extended explanation without editing the grade.

IV. COURSE

The combined first semester course InProg (In: Introduction
to Informatics, and Prog: Fundamentals of Programming) is
a mandatory courses in the Bachelor of Information Engi-
neering®. It introduces students to programming using the

2Information Engineering is a study program comparable to Computer
Science which integrates additional management and engineering aspects.

interactive learning method described in Section III. InProg
consists of 4 hours of lecture and 4 hours of tutor group
exercises per week. The learning objectives are that students
get acquainted with object-oriented and functional program-
ming. Assignments apply problem-solving concepts such as
basic data structures, recursion, classes and methods, lists, GUI
creation, concurrency, and advanced object-oriented program-
ming concepts. The final grade is determined by the computer-
based final exam (for In) and the score of weekly homework
exercises (for Prog).

The course uses constructive alignment to align teaching
and assessment with the course objectives [26]. Each lecture
defines a set of learning goals based on the six cognitive skills
in Bloom’s taxonomy [27]. The instructors focus on higher
cognitive skills so that students learn to apply concepts in
concrete situations.

A. Organization

One lecturer and one exercise instructor organized and
conducted the course with the help of 4 student tutors (students
who successfully approved before). The course took place in
the winter semester (2021-2022) over 13 weeks. In total, 70
students were registered for the course, and around 60% of
them participated actively in the lecture hall while the students
who attended the streamed lecture could interact using Zulip®.

To deal with the challenge of keeping students motivated
throughout the semester, the course includes interactive el-
ements such as in-class quizzes with multiple-choice, drag-
and-drop, or short-answer questions to keep them engaged
throughout the course. The quizzes help to recapture learned
content and their questions are focused on problem-solving.

B. Programming Exercises

Students learn to make connections and see differences
between models and their implementation in programming
exercises. This stimulates their cognitive skills and they learn
to apply the knowledge when implementing source code.

For the creation of a programming exercise, problems with a
possible real context are proposed, avoiding the use of typical
variables (X, y, etc.). In this way, students take ownership of
the problem. Students are provided with a repository with
a template for developing the solution which has TODOs
comments to guide students on where and how they should
provide their solution. The tests are focused on providing
immediate feedback to students allowing them to iterate their
solution until completing the tests that evaluate the exercise.

Artemis allows students to post questions about an exercise.
Instructors, tutors, and students can react to the questions
and answer them. Additionally, instructors can post announce-
ments that are accompanied by an email to the students.

Programming exercises are mostly automatically evaluated.
The feedback that students receive about their submissions is
crucial to understand how they can improve. In the following,

3Zulip is an open-source instant messaging platform that can easily be
hosted by a university. Link: zulip.com

we describe examples of exercises used in week 11 for
teaching the topic of GUIs.

Short in-class exercise: L11EO3 Email Generator: Students
develop a GUI for creating an email address using two text
fields, one button, and a label. This exercise put into practice
the use of controls and layouts with JAVA FX. The estimated
time to solve this exercise is 10 minutes, and when the time
is up, the lecturer solves it and explains the solution.

Group exercise: GI1EOI Airport Check-In: Students de-
velop a GUI for an airway check-in portal. They have to
implement controls, different layouts, usability principles, and
some logic around the functions of these controls. The esti-
mated time to solve this exercise in the tutor session is approx
45 minutes.

Homework exercise: HI1EOI ToDo List: Students imple-
ment a Task-List with a GUI that creates, deletes, sorts, and
updates task items or marks them as solved. In addition,
students apply Nielsen’s 10 heuristics principles taught in
the lecture [28]. This is an exercise that allows the student
to be creative as well. The implementation of the logic
part is evaluated automatically while the GUI implementation
part is evaluated manually (semi-automatic assessment). The
estimated time to solve this exercise is 120 minutes.

C. Tutor Exercise Sessions

Four tutors hold tutor sessions weekly with around 15
students to moderate discussions and review the learned con-
cepts in case the students have questions. Students apply the
knowledge acquired in the lecture solving the group exercises.
Each tutor exercise session is structured as follows:

1) Review of previous lecture [5-10min]: students dis-
cuss the learning goals, outline, and summary.

2) Homework presentation [20 - 30 min]: students present
their solution to homework exercises.

3) Group work [90- 120 min]: Students work on prede-
fined group exercises in groups (3-6 students).

4) Discussion of next homework [5 min]: the new home-
work exercises are briefly discussed.

D. Final Exam

The final evaluation for InProg is an on-site computer-based
exam, which is composed of two quiz exercises, one modeling
exercise, and two programming exercises representing 90
points in total. Each exercise has multiple variants for difficult
cheating. Two weeks before the students get familiar with the
exam mode in Artemis with a test exam.

The exam follows a constructive alignment and assesses the
competencies taught in the learning activities of the course
that are aligned with the learning goals. The quiz exercises
include 10 questions. The modeling exercise presents a code
and asks to provide the corresponding flow chart diagram.
The first programming exercise is focused on object-orientated
programming and streams (automatic assessment). The second
programming exercise is focused on GUIs and testing (semi-
automatic assessment). Students do not retrieve feedback dur-
ing the exam but only see if their code compiles or not.

For the exam, 48 students were registered (68.5 % of the
registered students in the course), 44 of them started the exam,
and 41 submitted a solution. In the end, 25 students (56 % of
the submitted ones) passed the exam.

E. Scaling the Interactive Learning Methodology

When the InProg course concluded, 62 students from this
group participated in the following course in the second
semester, Introduction to Software Engineering (ISE)* which
introduces different software engineering concepts and evolves
the development of programming exercises. This course ap-
plied the interactive learning methodology and was also
conducted on another campus in another city with a group
of 2,163 students. The participation and performance of both
groups were similar (see Table I). Group 1 includes students
who participated in InProg and Group 2 includes students from
the other city with the same course.

TABLE I
OBTAINED RESULTS OF APPLYING INTERACTIVE LEARNING IN COURSES
WITH A DIFFERENT NUMBER OF PARTICIPANTS.

Parameter Group 1 Group 2

Registered students in the course | 62 (100 %) | 2,163 (100 %)
Exam participation 44 (71 %) 1,646 (76 %)
Approved students 25 (56 %) 1,055 (64 %)

Finding 1: Initial exposure and subsequent application
of interactive learning, across groups of varying sizes,
lead to improved outcomes that show scalability for
education, even in courses with large enrollments.

V. DISCUSSION

The Interactive learning methodology has significantly en-
hanced programming education and problem-solving through
coding. By offering contextual programming exercises, stu-
dents are incentivized to meticulously analyze and iterate
over solutions. Continuous feedback bolsters programming
proficiency and resilience.

Collaborative dynamics between students and instructors via
communication portals enable multifaceted solution discus-
sions. In-class programming exercises fortify concepts, while
quizzes foster clarifying discussions on prior topics.

The participation and performance of the students are shown
in Figure 3. The performance during the first two weeks is
high because the basic concepts were presented. However, the
performance in week 10 is low due to the complexity of the
content (threads). This performance improved in the following
three weeks because the students were able to earn bonus
points with optional challenges.

The utilization of computer-based examinations streamlines
the assessment procedure, substantially mitigating the expen-
diture of instructor effort.

The student evaluation of the course presented many posi-
tive results. Students liked that they received immediate and

It is not required to pass InProg for ISE but it still highly recommended.

100%

80% | P —T=——— e

I FEEET T e T
40%
20% I
0%
1 2 3 4 5 6 7 8 9 10 11 12 13

Week
Participation I Average score

Linear (Participation) =—==-Linear (Average score)

Fig. 3. Average participation and the average score in the Homework exercises
per week during the InProg course.

helpful feedback for their exercise submissions. One student
e.g. stated: “The course is very well structured in the way that
there are incrementally difficult exercises which allow us to
ease into the topics”.

Finding 2: Students emphasize the benefits of tutorials to
improve understanding of taught concepts and to prepare
for homework assignments.

VI. CONCLUSION

Interactive learning simplifies the conduction of program-
ming exercises by integrating distributed version control and
continuous integration. This pedagogical approach equips stu-
dents with the tools and resources to learn through automated
feedback in group and individual exercises. Additionally, it
fosters interaction in scheduled tutorial sessions and facilitates
the execution of assessments on personal computing devices.

Notwithstanding the encouraging outcomes associated with
this methodology, it has become apparent that emergent chal-
lenges warrant attention in subsequent iterations. A particular
area of concern is the quantification of the time investment
required by each individual exercise. Consequently, an adap-
tive approach that calibrates the complexity of exercises in
response to the diverse competencies of students in heteroge-
neous groups is projected as a significant enhancement.

This paper substantiates the efficacy of interactive learning
as a viable instructional strategy in introductory programming
courses, delineating its advantages for both learners and edu-
cators. The insights pertaining to the benefits and challenges
discussed herein are envisaged to inform the adoption and
adaptation of this methodology across various educational
domains.

REFERENCES

[1] T. Connolly, M. Stansfield, and T. Hainey, “An application of games-
based learning within software engineering,” British Journal of Educa-
tional Technology, vol. 38, no. 3, pp. 416-428, 2007.

[2]

[

(98]
[t

—_
B~
=

—_
W
—_

—_
[=))
—

[7

—

[8

[t}

[9]

[10]
[11]
[12]
[13]
[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

D. Shaffer, “Pedagogical praxis: The professions as models for postin-
dustrial education,” Teachers College Record, vol. 106, no. 7, pp. 1401-
1421, 2004.

K. VanLehn, “Cognitive skill acquisition,” Annual Review of Psychology,
vol. 47, pp. 513-539, 1996.

J. Sweller and G. Cooper, “The use of worked examples as a substitute
for problem solving in learning algebra,” Cognition and Instruction,
vol. 2, no. 1, pp. 59-89, 1985.

J. G. Trafton and B. Reiser, “Studying examples and solving problems:
Contributions to skill acquisition,” tech. rep., Naval HCI Research Lab,
Washington, DC, USA, 1993.

R. Higgins, P. Hartley, and A. Skelton, “The conscientious consumer:
Reconsidering the role of assessment feedback in student learning,”
Studies in higher education, vol. 27, no. 1, pp. 53-64, 2002.

A. Trons, Enhancing learning through formative assessment and feed-
back. Routledge, 2007.

J. Whitehead, “Collaboration in software engineering: A roadmap,”
FOSE, vol. 7, pp. 214-225, 2007.

K. Livingstone, “Constructive alignment and the curriculum: a call
for improved pedagogical practices in higher education,” Blue Ocean
Research Journals, vol. 3, no. 12, pp. 19-34, 2014.

H. Ebbinghaus, “Memory: A contribution to experimental psychology,”
Annals of neurosciences, vol. 20, no. 4, p. 155, 2013.

J. Murre and J. Dros, “Replication and analysis of ebbinghaus’ forgetting
curve,” PloS one, vol. 10, no. 7, 2015.

C. Bonk and C. Graham, The handbook of blended learning: Global
perspectives, local designs. John Wiley & Sons, 2012.

C. Bonwell and J. Eison, Active Learning: Creating Excitement in the
Classroom. ASHE-ERIC Higher Education Reports., 1991.

D. Buehl, Classroom strategies for interactive learning. Stenhouse
Publishers, 2017.

A. Kolb and D. Kolb, “Learning styles and learning spaces: Enhancing
experiential learning in higher education,” Academy of management
learning & education, vol. 4, no. 2, pp. 193-212, 2005.

F. Lyman, “Think-pair-share: An expanding teaching technique,” Maa-
Cie Cooperative News, vol. 1, no. 1, pp. 1-2, 1987.

A. Kothiyal, R. Majumdar, S. Murthy, and S. Iyer, “Effect of think-pair-
share in a large csl class: 83% sustained engagement,” in Proceedings
of the 9th annual international conference on International computing
education research, pp. 137-144, ACM, 2013.

S. Krusche and A. Seitz, “Increasing the interactivity in software
engineering moocs - A case study,” in 52nd Hawaii International
Conference on System Sciences, pp. 1-10, 2019.

P. Robinson and J. Carroll, “An online learning platform for teaching,
learning, and assessment of programming,” in Global Engineering
Education Conference, pp. 547-556, 1IEEE, 2017.

J.-Y. Wang and J.-C. Liang, “Codinghere: Online judge and assessment
system for programming course,” in 5th Eurasian Conference on Edu-
cational Innovation, pp. 126-129, 1EEE, 2022.

S. Krusche, B. Bruegge, I. Camilleri, K. Krinkin, A. Seitz, and
C. Wobker, “Chaordic Learning: A Case Study,” in 39th International
Conference on Software Engineering: Software Engineering Education
and Training, pp. 87-96, IEEE, 2017.

G. Dames, “Enhancing of teaching and learning through constructive
alignment,” Acta Theologica, vol. 32, no. 2, pp. 35-53, 2012.

S. Krusche, N. von Frankenberg, and S. Afifi, “Experiences of a software
engineering course based on interactive learning,” in 15. Workshops
Software Engineering im Unterricht der Hochschulen, pp. 32-40, 2017.
S. Krusche, N. von Frankenberg, L. M. Reimer, and B. Bruegge, “An
interactive learning method to engage students in modeling,” in 42nd In-
ternational Conference on Software Engineering, Software Engineering
Education and Training, pp. 12-22, ACM, 2020.

S. Krusche and A. Seitz, “ArTEMiS: An Automatic Assessment Man-
agement System for Interactive Learning,” in 49th Technical Symposium
on Computer Science Education, pp. 284-289, ACM, 2018.

J. Biggs, “Aligning teaching and assessing to course objectives,” Teach-
ing and learning in higher education: New trends and innovations,
vol. 2, pp. 13-17, 2003.

B. Bloom, M. Engelhart, E. Furst, W. Hill, and D. Krathwohl, “Taxon-
omy of educational objectives: The classification of educational goals,”
1956.

J. Nielsen, “Enhancing the explanatory power of usability heuristics,” in
Proceedings of the SIGCHI conference on Human Factors in Computing
Systems, pp. 152-158, 1994.

	Introduction
	Related Work
	Learning Method
	Deepening the Learning Content
	Exercises
	Tool Support
	Assessment

	Course
	Organization
	Programming Exercises
	Tutor Exercise Sessions
	Final Exam
	Scaling the Interactive Learning Methodology

	Discussion
	Conclusion
	References

