
Context-Aware User Feedback in Continuous Software

Evolution

Dora Dzvonyar

Technical University of Munich

Munich, Germany

dzvonyar@in.tum.de

Stephan Krusche

Technical University of Munich

Munich, Germany

krusche@in.tum.de

Rana Alkadhi

Technical University of Munich

Munich, Germany

alkadhi@in.tum.de

King Saud University

Riyadh, Saudi Arabia

Bernd Bruegge

Technical University of Munich

Munich, Germany

bruegge@in.tum.de

ABSTRACT
User feedback is an important means of validating require-
ments and discovering new requirements in continuous soft-
ware evolution. However, users have a low motivation to
provide feedback and prefer applications which do not inter-
rupt their work. Due to missing context information, devel-
opers have di�culties to analyze feedback, and to integrate
it into their development work.

In this paper, we describe CAFE, a context-aware feed-
back system which consists of: (1) a framework for collecting
in-situ user feedback enriched with usage context data; and
(2) a process for integrating feedback into a team’s develop-
ment activities. While the process is applicable to all kinds
of applications, the implemented framework concentrates on
mobile user feedback and its particular challenges.

We evaluated CAFE in a mobile application. Our results
indicate that the system is a valuable step toward increasing
user motivation to provide feedback and decreasing the de-
velopers’ e↵ort to integrate feedback, ultimately improving
user involvement.

CCS Concepts
•Social and professional topics ! Systems develop-
ment; Software maintenance; •Software and its engi-
neering! Software evolution; •Human-centered com-
puting ! Ubiquitous and mobile computing systems and
tools; Participatory design;

Keywords
User Involvement, Requirements Traceability, Usage Con-
text, Agile, Mobile Feedback

To appear in the International Workshop on Continuous Software Evolution

and Delivery - CSED, May 2016, Austin, TX, USA.

1. INTRODUCTION
User involvement has been recognized as an important

source of information for development teams [7, 11], and
has a positive impact on user satisfaction as well as project
and system success [2, 15]. In an agile software project,
developers need to be able to react to quickly changing re-
quirements and unclear specification [26]. Involving users in
the software development process helps to validate require-
ments and can lead to the early recognition of necessary
changes to the system [23].

Although feedback is integral to continuous software evo-
lution, several challenges exist in this domain. Studies have
shown that users generally have a low motivation to give
feedback, and that users prefer that the application does
not interrupt their work for feedback provision [1]. If the
process is not fast, easy and integrated, their reluctance to
feedback increases even further [24].

Additional problems arise after users have provided feed-
back. If feedback arrives through di↵erent channels and in
heterogeneous form, it becomes cumbersome for the develop-
ment team to collect and manage [20, 10]. Another challenge
is missing context information in the feedback artifacts [15].
The more the developers know about the user’s context, the
easier they can understand his problem or request additional
information [7]. Since end users have no background in soft-
ware engineering, they do not know which information the
development team needs, leading to a mismatch between
what users provide and what developers require [4].

In addition to missing information, spontaneous feedback
is di�cult to analyze if it is written in unstructured natural
language [24]. The author of the message might not specify
which feature he is providing feedback on, or might comment
on multiple aspects of the application. It is therefore di�cult
for developers to transform user feedback into a requirement
or a reproducible bug which they can use as basis for future
development iterations [20, 10]. Researchers claim that ”a
clear research gap exists for mechanisms to use customer
feedback in the most appropriate way so that information
can be quickly interpreted” [22]. Once the developers have
extracted requirements from the received feedback, it is ben-



eficial to link the feedback to the implemented requirement
to trace the evolution of the system [15].

These di�culties lead to low developer motivation to con-
sider and integrate feedback. Evaluations have shown that
developers are worried about the collection and analysis of
feedback being overly time-consuming [16]. If developers do
not change the application based on the received feedback,
the users’ motivation to provide feedback as well as the users’
satisfaction decrease, because their opinion does not have an
impact on the application [18]. In the long term, the devel-
opment team misses a valuable opportunity to validate their
system regularly and to discover new requirements [23].

Our aim is to design a mechanism for user feedback which
addresses these challenges. We propose CAFE, a Context-
Aware FEedback system which consists of a framework for
collecting user feedback as well as a process for integrating
it into the team’s development activities. While the process
is applicable to all kinds of applications, the implemented
framework concentrates on mobile user feedback and its par-
ticular challenges [14].

CAFE provides a channel for users to give feedback with
as little e↵ort as possible, and to record this feedback in
the issue tracking system, which is already used for devel-
opment work. By saving feedback and development tasks in
the same system, we can realize links between the two and
thus document the evolution of requirements through user
feedback, which we call feedback traceability. In addition, we
enrich the received feedback by recording the usage context,
and give the user the opportunity to further structure his
message. By attaching this additional data to the feedback,
CAFE provides developers with a better understanding of
the user’s situation.

This paper is organized as follows. In Section 2 we de-
scribe the main concepts and components of CAFE. This
is followed by a first evaluation of the feedback mechanism
described in Section 3. We discuss the results of this evalu-
ation in Section 4 in terms of implications and limitations,
and extract a conclusion and next steps in Section 5.

2. CONTEXT-AWARE FEEDBACK SYSTEM
CAFE combines an approach of integrating feedback into

the development process with concepts from the domains
of usage context tracking and feedback traceability. In the
following, we summarize background and related work in
each of these fields and explain how CAFE integrates these
approaches into a comprehensive framework and process.

2.1 Integration of feedback into development
A successful user involvement strategy needs a clear pro-

cess including infrastructure, procedures and communica-
tion channels as well as support by the management [10, 6].
Process models concerning the integration of user feedback
into continuous software evolution presented by fellow re-
searchers emphasize that user feedback should be taken into
account regularly and have a set place in the software evo-
lution process. Schneider presents a similar cycle of ”trans-
forming awareness to raw feedback, and further to valid re-
quirements and business advantage” through four consecu-
tive steps of feedback composing and sending, analysis by
the development team, and the subsequent improvements
to the system [24]. Pagano’s domain-independent model for
continuous user involvement, also advocates for the regular
analysis of user feedback in both early and more advanced

Figure 1: Integration of feedback into workflows of
the development team, based on [13]

stages of a software project [20]. However, these models lack
integration into specific processes and activities carried out
by the development team [15, 20].

We therefore base CAFE on the feedback lifecycle by Kr-
usche et al. [13], which is more concrete with regard to
the integration of user feedback into specific activities of the
development process. Depending on the kind of each feed-
back item, it is incorporated into the Analysis, Design or
Implementation workflows. While a Bug Report can be im-
plemented right away, a Design Request is first processed
in the Design workflow, and a Feature Request has to be
analyzed before it can proceed through the Design and Im-
plementation activities, as shown in Figure 1. Feedback is
stored in the Backlog in the form of Issues [13]. CAFE in-
stantiates this feedback lifecycle with concrete tool support
for gathering feedback and storing it in the issue tracking
system. User feedback is gathered in situ, i.e., without the
user leaving the application he is currently using [20].

Figure 2 gives an overview of CAFE’s process from both
the User’s and the Developer’s point of view. Members of
the development team (shown in blue) perform all activi-
ties in the issue tracker, while users (in green) interact with
the system through the application which integrates CAFE’s
feedback gathering component. Before a new release of the
application, the Developer selects changes to be included in
the new version and identifies the corresponding issues in the
issue tracking system. If a change is visible to the user, the
Developer specifies the usage context in which the change is
noticeable. He also gives the change a title that the user is
able to understand. These two activities can be performed
in the issue tracker and are used to display context-relevant
suggestions to the user, as described in Section 2.2. The
application can now be released and installed by the User.

When the User has installed and used the new version
and wants to send feedback to the development team, he
initiates the feedback process through a UI element or ges-
ture provided by the application which integrates CAFE.
At this point, CAFE temporarily stores the usage context
from which the process was started and displays the feed-
back screen where the user can immediately start sharing
his opinion. The User types in his message and can send the
feedback right away, but if he is more motivated, he can also
decide to specify more details such as the type of his message
(e.g. feature request vs. bug report). CAFE also presents
the user with a list of changes relevant for his usage context
by displaying issues which are important in the screen from
which he initiated the feedback process, as described in de-
tail in Section 2.2. He can select one of these suggestions
as the subject of his feedback if he thinks that his message



Figure 2: Simplified process model of CAFE

concerns one of the listed changes. If the User specifies addi-
tional details, these are attached to the resulting Feedback
issue which is saved in the issue tracking system. In par-
ticular, the selected link between the new Feedback Issue
and the previous change is established, which is the basis of
feedback traceability as described in Section 2.3.

The process continues with the analysis of the received
feedback by a member of the development team. Feedback
analysis is possible directly in the issue tracking system, and
the feedback is stored in a structure similar to the issues that
the team already uses for development. Thus, team mem-
bers are able to understand the feedback without much ad-
ditional e↵ort. The usage context which is stored by CAFE
in the feedback issue also helps in the interpretation of the
user’s message. If the team needs to act based on the re-
ceived message, the Developer can convert the feedback to
a work item, e.g. a Bug or a Feature Request, as shown
in Figure 1. The resulting work item is again linked to the
feedback issue it originated from, thus realizing traceability
as described in Section 2.3. The work item can now be pri-
oritized and implemented. The subsequent improvement of
the application based on the received user feedback closes
the loop for continuous software evolution.

The practice of saving feedback in the issue tracker is not
a new approach. For instance, Yetim et al. implemented
a component which can be integrated into certain desktop
applications [27]. Our work is similar because we provide a
way to send feedback to the issue tracker, but we add an im-
plementation for mobile devices. We extend their approach
by incorporating context parameters and traceability of re-
quirements through received feedback, as described in the
following sections.

2.2 Context in user feedback
CAFE enriches user feedback with variables of the usage

context. We follow the definition of Pagano, who defines
the term ’context’ to include ”all current and past condi-
tions and events which influence the interaction of a user
with an application or the execution of an application on
a system” [20]. Knowing about the user’s context helps to
reproduce the situation in which he encountered a problem
and therefore facilitates feedback analysis [7]. Our goal is
to enrich the gathered feedback with additional data and
compensate for the user’s potential failure to provide the
necessary information to the development team.

Some approaches automatically save details of the usage
context to user feedback [17, 20], while others provide possi-
bilities for the user to manually structure his feedback, such
as specifying the category of his message or selecting his con-
cern from a list of pre-defined problems [25, 24]. CAFE bun-
dles aspects of multiple approaches into one comprehensive
user feedback framework. The system combines automatic
tracking of the usage context with possibilities for the user
to manually specify the context of his feedback, thus giving
it additional structure.

For instance, CAFE saves the application screen from
which the user initiated the feedback process along with de-
tails of the device the application is used on (e.g. model, OS
version, language), and attaches it to the feedback in natural
language given by the user. CAFE can also be configured
to track important interactions of the user with the appli-
cation, for example which screens the user visited or what
UI elements he interacted with prior to giving feedback. In
addition to this automatically gathered information, CAFE
presents the user with a list of recent changes in the applica-
tion which are relevant to his current usage context. After
the user initiates the feedback process from a certain screen
of the application, he gets a list of recently implemented
changes which are visible in that screen because he is likely
to comment on one of those changes. If the user selects one
of these suggestions as the subject of his message, the result-
ing feedback is linked to the previously implemented change,
as described in Section 2.3.

2.3 Feedback traceability
We derive the term Feedback Traceability from the domain

of Requirements Traceability, which is defined as ”the abil-
ity to describe and follow the life of a requirement [...] from
its origins, through its development and specification, to its
subsequent deployment and use, and through all periods of
on-going refinement and iteration in any of these phases”
[9]. Requirements traceability is considered as important
for a development team to verify the system against the
original requirements and to assess the impact of prospec-
tives change to the system [8]. Since user feedback can be
both the source of a new requirement, and the consequence
of an implemented requirement, it is important to represent
this bi-directional trace between feedback and requirements.
CAFE records and visualizes the links between feedback and
requirements, which addresses a deficit in current user in-
volvement practice reported by developers [16].



Related work in this domain includes Nagel et al.’s ap-
proach to link voice recordings to development tasks result-
ing from comments [19]. Panichella et al. use classification
techniques to suggest relevant links between source code and
other artifacts such as requirements or models [21]. How-
ever, these approaches lack a concrete and integrated rep-
resentation of the relationship between user feedback and
subsequent development work, which CAFE achieves by in-
corporating feedback into the issue tracking system as de-
scribed in Section 2.1. Since issue trackers support establish-
ing links between issues and are already used for knowledge
representation by many development teams [3], we consider
them a viable solution to address this shortcoming.

CAFE establishes a link between a user feedback item
and a previously implemented requirement by presenting
context-relevant suggestions to the user as described in Sec-
tion 2.2. These suggestions correspond to changes that the
developers have configured in the issue tracker, as described
in Section 2.1. If the user selects one of these items as the
subject of his feedback, the resulting feedback issue is linked
to the issue of the implemented requirement. The require-
ments resulting from the feedback can then be linked to the
feedback message directly in the issue tracker.

Feedback traceability is useful to analyze what impact a
particular change had on the users, or to assess the impor-
tance of a potential new feature for the user base by show-
ing how many users suggest that feature. It also serves as a
knowledge base for the team, e.g. by documenting the rea-
sons why a change was implemented. We did not find any
other feedback mechanism which realizes a link between re-
quirements and user feedback in an integrated system that
can be used for development work. We therefore consider
feedback traceability to be a major contribution of CAFE.

3. EVALUATION
To demonstrate the applicability of CAFE, we conducted

a formative evaluation within a university environment and
evaluated the usage of the system from both the user and the
developer side. We are examining the following hypotheses
in the evaluation of CAFE:

H1 CAFE increases users’ motivation to provide feed-
back.

H1.1 The introduction of CAFE into an application
leads to more user feedback.

H1.2 Users take the opportunity provided by CAFE to
specify additional information in their feedback.

H2 CAFE decreases developers’ e↵ort to integrate
feedback.

H2.1 The usage context collected by CAFE decreases
the e↵ort to analyze user feedback.

H2.2 Storing feedback in the issue tracker decreases
the e↵ort to integrate it into the development.

3.1 Setting
The formative evaluation took place in the context of a

multi-project capstone course conducted twice per year at
the Chair for Applied Software Engineering at the Techni-
cal University in Munich [5, 12]. In this course, participants

produce mobile applications in real software projects for cus-
tomers from industry based on an agile process model called
Rugby which is a variation of Scrum [13].

We integrated CAFE into an application of this course and
evaluated its usage from the user and the developer side.
This application, named Conada, is designed to promote
collaborative fitness at the workplace. We set up CAFE to
be triggered from every screen of the application through
a shake gesture because this did not require a new element
to be added to the user interface, which would not have
fit in every screen. We configured the feedback system to
track user interaction and prepared it to show suggestions
of implemented functionality to the user so that he can link
his feedback, as described in Sections 2.2 and 2.3.

We integrated CAFE into the application Conada and di-
vided our evaluation into two consecutive stages. First, we
conducted experiments with users to collect feedback, which
the Conada developers then used for further development.
Second, we held semi-structured interviews with members
of the development team. Both evaluation phases are de-
scribed in the following subsections.

3.1.1 User Experiments

We first evaluated CAFE from a user’s perspective in
the form of quasi-experiments conducted on two consecu-
tive days in July 2015. Participants were either students or
persons involved with the university. In total, 15 subjects
took part in this phase of the evaluation, in sessions either
on their own or with another person present to evaluate the
collaborative workout functionality of Conada.

Each session lasted 30-45 minutes depending on the par-
ticipants’ speed and was organized as follows: we explained
to the participants that they were about to give feedback
on a mobile application. We made it clear that while we
were developing a feedback system, they would not evaluate
the feedback system, but use the Conada application and
communicate their thoughts to the developers through the
feedback system. Moreover, we assured them that the na-
ture of their feedback (e.g. negative vs. positive comments)
would not influence the outcome of the evaluation to en-
sure that they provide their honest opinion. To ensure that
each participant tries out the main functionality of the ap-
plication, we provided a sheet with a minimal usage scenario
which the participants were supposed to go through during
the experiment. In addition, we encouraged them to use the
application freely.

On the first day of evaluation, we put 7 participants into
an ’uninformed group’ to which we did not introduce CAFE.
The 8 participants of the second day were put into an ’in-
formed group’, for which we opened CAFE’s feedback screen
once, told them that they could type a message and indi-
cated where they could add details to it. However, we were
careful to only give them a neutral introduction without
implying that these details were important to the develop-
ers. We did not reveal the context-tracking functionality of
CAFE to either group, and merely told them to shake the
device whenever they thought of something to tell to the
developers. We created the two groups to examine whether
there are di↵erences in the usage of the feedback system
between uninformed and informed participants.

After each participant had spent on average 20 minutes
using Conada and giving feedback to the developers of the
application, we gave them a questionnaire asking for their



 

20 %

40 %

60 %

80 %

100 %

Strongly Disagree Disagree Neutral Agree Strongly Agree

giving feedback from within the application (instead of e.g. via e-mail or the browser)
specifying what kind of feedback I was leaving (comment, feature request or bug report)
receiving suggestions from the application (“Does your feedback concern...?")

The following feature of the feedback system was useful to me:

Figure 3: Users’ opinion about three key function-
alities of CAFS

opinion on di↵erent aspects of the feedback system. This
controlled environment gave us the opportunity to obtain
in-depth data on the users’ experience which would not have
been possible in a real-world setting.

3.1.2 Developer Interviews

The above-described experiments resulted in user feed-
back which we used for evaluating CAFE from the develop-
ers’ perspective. The Conada development team was asked
to analyze and consider the received feedback in their final
development iteration. We then conducted semi-structured,
one-on-one interviews with six members of the development
team as well as their project managers.

The interviews were audio recorded and included ques-
tions on the team member’s experience with the feedback
system during the project. In addition, we asked their opin-
ion on how it could be used in future projects with more
time to consider and implement feedback. We asked each
interviewee the same questions, based on a five point Lik-
ert scale and gave them the opportunity to justify their re-
sponses freely. This semi-structured format allowed us to
ask follow-up questions if we wanted to explore a particu-
lar topic in greater detail. We also asked the participants
open questions about their ideas for future improvements to
CAFE and possible projects in which they would use the
system. This evaluation approach led to a combination of
categorical and unstructured data which was useful as a base
for the further development.

3.2 Results
In this section, we summarize the results from both the

user experiments and the developer interviews.

3.2.1 User Experiments

Each of the 15 participants gave feedback at least four
times while using the Conada application, resulting in 93
total feedback items which we analyzed along with the ques-
tionnaire data. The first questions referred to the partici-
pants’ background in software engineering as well as their
general attitude towards feedback. 73 % of the subjects
claimed that they never or almost never gave feedback on
applications, although they knew that it was valuable to a
development team. However, when asked for the main rea-
sons for providing feedback, the answers showed a clear con-
sensus on negative motives. Encountering a problem while
using an application or being dissatisfied with the current
functionality were the main reason.

We asked the participants for their opinion on the key
features of CAFE using a five point Likert scale. An excerpt
of the results is shown in Figure 3. 87 % strongly agreed that

0 %

20 %

40 %

60 %

80 %

100 %

non-informed  
group

informed  
group

issues with feedback type
issues without feedback type

0 %

20 %

40 %

60 %

80 %

100 %

non-informed  
group

informed  
group

issues with link
issues without link

uninformed uninformed

Figure 4: Feedback issues uninformed vs. informed
group

giving feedback without the need to leave the application
was useful. 53 % strongly agreed that they liked being able
to specify the category of their feedback (comment, feature
request or bug report). Regarding the suggestions o↵ered
by CAFE which allow users to link feedback to a specific
change in the application, the answers were not as clear,
but still positive (77 % agreed or strongly agreed).

As a next step, we analyzed how participants used the
features of CAFE by inspecting the feedback stored in the
issue tracker. We noticed a clear di↵erence between the
’informed group’ which had prior knowledge of the func-
tionality of CAFE and the ’uninformed group’ which was
not introduced to the feedback system. The e↵ect of sim-
ply mentioning these features to the participants is shown
in Figure 4. Both charts contain the proportion of feedback
items in the issue tracker with and without additional data,
compared between the informed and uninformed group.

The prior introduction to CAFE’s functionality had a
strong e↵ect on the usage of both features. While only 6 % of
the issues had a type (comment, feature request, bug report)
assigned in the uninformed group, the informed participants
picked a type for 60 % of their feedback messages. The in-
dication of the suggestion functionality of CAFE described
in Section 2.3 also led to a strong increase of its usage, rais-
ing the proportion of feedback items linked to a previously
implemented requirement by a factor of 10.

To investigate whether CAFE creates a feeling of involve-
ment with users, we asked the participants how convinced
they were that their feedback would be considered by the
app creators, compared to when they would give feedback
via the AppStore or email. 60 % are more convinced of
their impact on the application through CAFE compared to
the AppStore, and 73 % stated the same opinion when they
compare CAFE to providing feedback via email.

3.2.2 Developer Interviews

The developers of Conada were pleased to get feedback
from users because it helped them to prioritize the tasks
for the last development iteration before the final presen-
tation of their project. 75 % of the interviewed developers
and project managers strongly agreed that the collection of
feedback in the issue tracker was useful to their team. De-
velopers and project managers agreed that CAFE made it
”less of a hassle” to look at feedback, because it was ”just
there” and they did not need to leave the system they al-
ready used regularly to find it. They also remarked that
being able to see what kind of feedback a particular change
evoked could be useful for analysis. 83 % of interviewees
agreed that CAFE is applicable in industry projects they



20 %

40 %

60 %

80 %

100 %

Strongly Disagree Disagree Neutral Agree Strongly Agree

…leads to more feedback from the users
…leads to more structured feedback from the users
…makes the users feel that their comments matter

I expect that the feedback system…

Figure 5: Developers’ opinion about the implica-
tions of using CAFE

were involved, as they were already using an issue tracker
and integrating the system would not lead to a large orga-
nizational overhead.

All interviewees strongly agreed that they benefited from
the attached usage context information. Two of the develop-
ers mentioned the example of one particular feedback item
containing a simple question ”What does the switch do?”,
which they could not have understood without the attached
information of the screen which the feedback came from.

As shown in Figure 5, 75% of the participating devel-
opers agreed or strongly agreed that CAFE would lead to
more feedback from users, and over half of them agreed that
CAFE would also lead to more structured feedback. The
majority reasoned that this was due to the simplicity of the
feedback process. While they agreed that CAFE would in-
crease user involvement, they made this dependent on the
way the development team communicated with the users. If
they reacted to feedback accordingly, user involvement and
satisfaction would rise, otherwise the feedback system would
have no impact on user involvement.

4. DISCUSSION
In this section, we discuss the implications of our work for

both users and developers as well as its current limitations.

4.1 Implications
The evaluation results confirm part of our research hy-

potheses. In particular, we were able to gather in-depth
information on the usage of CAFE on the user side through
the controlled experiments and the analysis of the question-
naire data. We cannot yet confirm H1.1 because we cannot
determine whether including CAFE in the application led
to more feedback, considering that at the time of our evalu-
ation, the Conada development team had not yet collected
feedback through other channels. This hypothesis has to be
evaluated in a long-term setting, preferably by following the
amount of feedback over several consecutive releases of an
application after introducing CAFE. However, the fact that
the interviewed developers view CAFE to be beneficial for
user involvement provides first anecdotal evidence for H1.

Regarding H1.2, we discovered that there was a strong ef-
fect to the usage of CAFE’s features when users are informed
about the functionality of CAFE to attach additional data
to feedback. This indicates that users who know about this
functionality are willing to specify this information, while
participants of our uninformed group did not seem to find
these features. Therefore, future versions of CAFE will in-
clude adjustments of the user interface to counter this e↵ect.

The interviewed members of the development team unan-
imously agreed that the collected context information was
useful when working with feedback, which provides anecdo-
tal evidence for H2.1. The results along with the develop-
ers’ comments also validate our choice to save feedback di-
rectly in the issue tracker as opposed to an external database
(H2.2).

4.2 Limitations
While the results of our first evaluation support our hy-

potheses, there are certain limitations of this study. With re-
gard to the user experiments, our sample was homogeneous
concerning their knowledge in application development and
user feedback. This along with the fact that only 15 people
participated in our experiments limits the generalizability of
our results.

In addition to this external threat, the internal validity is
influenced by the controlled setting of the experiments. Our
participants claimed that they rarely give feedback, but our
study actively instructed them to do so. Thus, it is possible
that they like CAFE simply because they have rarely used
other feedback channels and have not experienced their ad-
vantages. However, we believe that every participant had
used other feedback channels at least once and could thus
compare it to the experience of CAFE.

The validity of the developer interviews is limited by the
fact that the developers of Conada could only use the re-
ceived feedback in one iteration. The evaluation should be
repeated after the participants have spent more time using
CAFE for development in order to get a more meaningful
response. The fact that the project took place in a univer-
sity setting can also be regarded as a limitation, although
the nature of the capstone course is as real as possible in a
student project, and 75 % of our participants characterized
themselves as semi-professional developers.

5. CONCLUSION AND FUTURE WORK
CAFE addresses several challenges that both users and

developers face in the current practices of providing and an-
alyzing user feedback. The system integrates an easy way
for users to give feedback without leaving the currently used
application. By storing user feedback in the issue tracking
system, it simplifies feedback collection, and makes it easier
for developers to consider feedback regularly because they
can analyze it in the system which they already use for their
daily tasks. Moreover, CAFE enriches the user feedback
with automatically collected information about usage con-
text such as the last interaction steps, and gives the user
the possibility to structure his feedback, e.g. by specifying
the feedback type. This helps to close the information gap
between users and developers.

CAFE goes further than other tools available by repre-
senting the connection between requirements and feedback,
which we call feedback traceability. User feedback can be
both the consequence of an implemented requirement, and
the source for new requirements, a connection which is rep-
resented in CAFE as links in the issue tracking system. This
o↵ers an integrated overview over the evolution of require-
ments in the software development process in the same sys-
tem, which we consider a substantial benefit of CAFE.

A first evaluation provides anecdotal evidence regarding
the impact of CAFE on users and developers. Users reported
CAFE to be simple to use and are willing to specify further



details to their text-based feedback if they are aware of the
possibility. Developers highlighted the fact that feedback is
stored in the issue tracker as particularly beneficial. They
further reported that both the automatically collected usage
context as well as the additional data specified by users such
as the feedback type helped them to analyze the feedback
and extract the underlying requirement.

We are currently conducting a second long term evalu-
ation with an AppStore application to obtain results in a
setting with a larger user base, a more experienced devel-
opment team and objective measurements for e�ciency. In
particular, we investigate whether developers consider user
feedback more regularly with CAFE, and how our system
impacts their e�ciency of integrating feedback based on pro-
cess metrics such as time spent on feedback analysis. We
also want to analyze the value of feedback traceability by
studying the impact of CAFE on rationale management. In
the long term, we want to gain insight into whether CAFE
has an impact on user satisfaction by improving user in-
volvement through examining the AppStore ratings of the
application over consecutive releases.

6. REFERENCES
[1] M. Almaliki, C. Ncube, and R. Ali. The design of

adaptive acquisition of users feedback: An empirical
study. In RCIS ’14, pages 1–12. IEEE, 2014.

[2] M. Bano and D. Zowghi. User involvement in software
development and system success: a systematic
literature review. In EASE ’13, pages 125–130. ACM,
2013.

[3] D. Bertram, A. Voida, S. Greenberg, and R. Walker.
Communication, collaboration, and bugs. In CSCW
’10, page 291. ACM, 2010.

[4] N. Bettenburg, S. Just, A. Schröter, C. Weiss,
R. Premraj, and T. Zimmermann. What makes a good
bug report? In SIGSOFT ’08, page 308. ACM, 2008.

[5] B. Bruegge, S. Krusche, and L. Alperowitz. Software
engineering project courses with industrial clients.
ACM Transactions on Computing Education,
15(4):17:1–17:31, 2015.

[6] L. Damodaran. User involvement in the systems
design process - a practical guide for users. Behaviour
and Information Technology, 15:363–377, 1996.

[7] M. De Sá and L. Carriço. Designing and evaluating
mobile interaction: challenges and trends. Foundations
and Trends in Human-Computer Interaction,
4(3):175–243, 2011.

[8] A. Egyed and P. Grunbacher. Automating
requirements traceability: Beyond the record & replay
paradigm. In ASE ’02, pages 163–171. IEEE, 2002.

[9] O. Gotel and A. Finkelstein. An analysis of the
requirements traceability problem. In RE ’94, pages
94–101. IEEE, 1994.

[10] J. Heiskari and L. Lehtola. Investigating the state of
user involvement in practice. APSEC ’09, pages
433–440, 2009.

[11] K. Holtzblatt. Designing for the mobile device:
Experiences, challenges, and methods.
Communications of the ACM, 48(7):32–35, 2005.

[12] S. Krusche and L. Alperowitz. Introduction of
Continuous Delivery in Multi-Customer Project

Courses. In Companion Proceedings of the 36th ICSE,
pages 335–343. IEEE, 2014.

[13] S. Krusche, L. Alperowitz, B. Bruegge, and
M. Wagner. Rugby: an agile process model based on
continuous delivery. In RCoSE ’14, pages 42–50.
ACM, 2014.

[14] S. Krusche and B. Bruegge. User feedback in mobile
development. In Proceedings of the 2nd International
Workshop on MobileDeLi, pages 25–26. ACM, 2014.

[15] S. Kujala. User involvement: a review of the benefits
and challenges. Behaviour & information technology,
22(1):1–16, 2003.

[16] S. Kujala, M. Kauppinen, L. Lehtola, and T. Kojo.
The role of user involvement in requirements quality
and project success. In RE ’05, pages 75–84. IEEE,
2005.

[17] W. Maalej, H.-J. Happel, and A. Rashid. When Users
Become Collaborators: Towards Continuous and
Context-Aware User Input. In OOPSLA ’09, page
981. ACM, 2009.

[18] W. Maalej and D. Pagano. On the socialness of
software. In DASC ’11, pages 864–871. IEEE, 2011.

[19] M. Nagel, J. Helming, M. Koegel, and H. Naughton.
Audio recording in software engineering. ICSE South
Africa, 2010.

[20] D. Pagano. Portneuf - A Framework for Continuous
User Involvement. PhD thesis, Technische Universität
München, 2013.

[21] A. Panichella, A. De Lucia, and A. Zaidman. Adaptive
user feedback for ir-based traceability recovery. In SST
’15, 2015, pages 15–21. IEEE, 2015.

[22] P. Rodŕıguez, A. Haghighatkhah, L. Lwakatare,
S. Teppola, T. Suomalainen, J. Eskeli, T. Karvonen,
P. Kuvaja, J. Verner, and M. Oivo. Continuous
deployment of software intensive products and
services: A systematic mapping study. Journal of
Systems and Software, 2016.

[23] J. C. Sampaio do Prado Leite and P. A. Freeman.
Requirements validation through viewpoint resolution.
IEEE Transactions on Software Engineering,
17(12):1253–1269, 1991.

[24] K. Schneider. Focusing spontaneous feedback to
support system evolution. In RE ’11, pages 165–174.
IEEE, 2011.

[25] K. Schneider, S. Meyer, M. Peters, F. Schliephacke,
J. Mörschbach, and L. Aguirre. Feedback in context:
Supporting the evolution of IT-ecosystems. Lecture
Notes in Computer Science, 6156:191–205, 2010.

[26] K. Schwaber and M. Beedle. Agile Software
Development with Scrum. Prentice Hall, New Jersey,
USA, 2001.

[27] F. Yetim, S. Draxler, G. Stevens, and V. Wulf.
Fostering Continuous User Participation by
Embedding a Communication Support Tool in User
Interfaces. AIS Transactions on Human-Computer
Interaction, 4(2):153–168, 2012.


