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Abstract

Auto-graded programming exercises involve multiple intercon-
nected artifacts including problem statements, code templates, ref-
erence solutions, and test suites. Inconsistencies between these
artifacts create extraneous cognitive load, forcing students to rec-
oncile contradictory information rather than focus on learning
objectives. Educators must manually detect such inconsistencies,
which is time-consuming and error-prone.

We present a theoretically grounded approach to automated
consistency verification for multi-artifact programming exercises,
building on Mayer’s Coherence Principle and Biggs’ Constructive
Alignment. The methodology combines a novel educational artifact
ontology with a specialized Large Language Model (LLM) pipeline
detecting Structural and Semantic inconsistencies across het-
erogeneous exercise components. The ontology defines five consis-
tency categories (Structural, Semantic, Assessment, Temporal,
Scope), and this release operationalizes the first twowhile reserving
the remaining three for future instantiation.

We evaluate on 91 perturbed variants from three Java exercises
that contain 93 annotated issues across six sub-categories. The
reference o4-mini configuration yields 63% precision, 91% recall, F1
0.75, and span F1 0.68, recovering nine in ten inconsistencies with
accurate spans; Structural mismatches peak at F1 0.87, whereas
Semantic naming remains the main source of noise at F1 0.72. Grok
3 Mini halves latency to 14.3 s and cost to $0.006 per run while
retaining F1 0.63. We release the PECV-bench replication package
to support reproducible and extensible baselines.

CCS Concepts

• Applied computing → E-learning; Document management
and text processing; • Computing methodologies → Natural

language processing; • Information systems→ Retrieval models
and ranking; • Software and its engineering→ Software verifica-
tion and validation.
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1 Introduction

Programming exercises are central to computer science education
and play a critical role in fostering practical problem-solving skills.
They typically consist of multiple interconnected artifacts, such as
problem statements, code templates, example solution, test suites,
and occasionally supporting materials like Unified Modeling Lan-
guage (UML) diagrams.

Modern learning management systems such as Artemis [9], Moo-
dle, and Canvas increasingly support such multi-artifact program-
ming exercises, enabling more interactive and automated learning
experiences. Each artifact serves a specific pedagogical function:
the problem statement defines the task in natural language, the Tem-
plate Repository provides scaffolded starter code to guide student
implementation, and the test suite repository evaluates correctness
based on predefined criteria.

When multiple instructors or teaching assistants collaborate in
designing or updating these artifacts, inconsistencies can arise. For
example, the problem statementmay instruct students to implement
a function named calculateAverage, but the provided template
already includes an empty implementation of a function named
computeMean, leading to confusion about whether students should
modify the existing code or start from scratch.

These unintentional discrepancies can confuse students, disrupt
learning flow, and compromise assessment fairness and instruc-
tional alignment. They can also trigger misinterpretations of the
task, inflate or deflate perceived difficulty, and even produce incor-
rect grading outcomes when test suites do not conform to spec-
ifications. Informal surveys of educational practitioners indicate
that instructors spend significant time on quality assurance (QA)
tasks, with consistency checking being a recurring challenge in
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collaborative exercise development environments. Despite their im-
pact, inconsistency detection and resolution remain largely manual,
time-consuming, and error-prone — especially at scale.

While prior work has investigated consistency checking in both
natural language requirements [4, 21] and structured software ar-
tifacts such as source code [8, 22] and UML models [11], these
efforts typically focus on single-artifact analysis. Educational plat-
forms, however, lack mechanisms for verifying consistency across
multiple interconnected artifacts, even though modern learning
environments present these artifacts together.

Existing static analysis tools and formal verification approaches
are not well suited to this task, as they often rely on complete formal
specifications, which are rarely available in an educational context.
Translating descriptions in natural language into formal constraints
would require a considerable amount of manual effort [4]. Recent
advances in LLMs have demonstrated strong capabilities in natu-
ral language understanding [5], logical reasoning [25], and code
generation [2, 26], motivating their use for consistency checks in
educational settings.

Educational research has produced rich error taxonomies rooted
in learning theory [1, 12, 18, 19], yet these rarely align with in-
consistency types observed in software-based educational artifacts.
This absence of alignment leaves no systematic categorization of
cross-artifact inconsistencies that integrates both pedagogical and
technical perspectives. Currently, there is a lack of automated tools
that can identify such inconsistencies across heterogeneous arti-
facts. The absence of benchmark datasets and evaluation frame-
works makes it difficult to compare methods or establish baselines
for consistency verification in educational content.

This paper presents an automated approach for multi-artifact

consistency verification in programming education, lever-
aging LLMs to detect pedagogically significant inconsistencies. It
promotes automated QA in programming education through three
contributions, conceptual and empirical:

(1) An ontology-based model captures the structure and inter-
dependencies of programming exercise artifacts. The model defines
five theoretically grounded consistency categories rooted in learn-
ing theory and software engineering (SE) research. We instantiate
and evaluate Structural and Semantic categories and outline
Assessment, Temporal, and Scope extensions for future work. The
implemented checkers presently cover only the subtypes detailed
in Section 3, leaving the broader taxonomy for subsequent releases.

(2) An LLM-based detection pipeline performs cross-artifact
analysis through specialized checkers, producing localized incon-
sistency reports with a short pedagogical rationale and a suggested
remediation.

(3) A benchmark for educational consistency verification

uses systematic perturbations in three real-world Java programming
exercises as input data, yielding 91 variants with 93 annotated
issues across six sub-categories. The evaluation spans multiple LLM
reasoning models as described in Section 5 and provides reusable
assets through the PECV-bench replication package, which bundles
code, dataset, prompts, ontology, and evaluation scripts as detailed
in Section 6.

The remainder of this paper proceeds as follows. Section 2 re-
views related work in consistency checking, LLM-based verification
methods, and educational error taxonomies. Section 3 presents the

conceptual model, including the ontology-based representation
and taxonomy of consistency issues. Section 4 describes the LLM-
based detection system architecture and implementation. Section 5
reports empirical evaluation results on the benchmark dataset. Sec-
tion 6 documents the reproducibility package and released assets.
Section 7 discusses implications and limitations, and Section 8 con-
cludes with directions for future work.

2 Related Work

We review related efforts across three intertwined streams to sur-
face the gaps that motivate this work. First, we examine how SE
research handles consistency across models, requirements, and
source code, highlighting strengths and blind spots. Second, we cat-
alog methodological approaches ranging from formal verification
to LLM-enabled pipelines and note the assumptions that limit their
reach. Third, we connect these software perspectives to educational
error taxonomies grounded in learning theory, then synthesize the
insights to position contributions at the intersection of consistency
verification and instructional design.

2.1 Consistency Checking in SE

In the SE domain, numerous studies have focused on the consistency
checking of software models. Early work by Nuseibeh offers a
critical review of approaches that explicitly tolerate and manage
inconsistencies, highlighting the various types of inconsistencies
that can emerge throughout different stages of the development
process [14]. Similarly, Spanoudakis and Zisman provide a survey
of inconsistency issues in software models and summarize the
techniques proposed to manage them [16]. More recently, Kim and
Kim investigate inconsistency problems in source code identifiers
within large-scale software systems and propose an automated
detection method based on a custom code dictionary [8].

In parallel, the consistency of requirement specifications and
their associated use cases has also been extensively studied. Vuotto
et al. examine the consistency of functional requirements, demon-
strating their approach through a robotic arm case study [21]. Simi-
larly, Chen et al. focus on verifying safety requirements for railway
interlocking systems using formal methods grounded in a domain-
specific language [4].

Beyond traditional requirements and source code, consistency
checking has also been applied to visual and structural design arti-
facts. One notable line of work focuses on UML, which supports
diverse aspects of software modeling but often suffers from internal
inconsistencies due to interdependent features [11]. Researchers ad-
dress this challengewith a unified checking approach that translates
UML models into Constraint Logic Programming (CLP) clauses us-
ing meta-modeling techniques, enabling the automated detection of
inconsistencies via a CLP solver. In parallel, recent work in the con-
text of LLMs explores new consistency challenges: Wang et al. ex-
amine discrepancies in coding style between LLM-generated code
and human-written code, highlighting the evolving landscape of
consistency verification in AI-assisted software development [22].

In summary, existing work on consistency checking primarily
focuses either on requirements captured in natural language [4, 21]
or on structured artifacts such as source code [8, 22] and UML
models [11].
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2.2 Consistency Checking Methods

Formal approach is a typical method for consistency checking [4,
21, 27]. A common strategy across recent work involves translat-
ing natural language (NL) requirements into a more constrained
representation – often termed structured natural language [21],
or a domain-specific specification language [4]. This intermediate
form reduces ambiguity while preserving human readability. The
structured statements are then automatically translated into formal
logic expressions (e.g., temporal logic or constraint specification
languages [4, 27]) suitable for consistency verification via formal
methods such as model checking [4] or realizability synthesis [27].

Nonetheless, while formal approaches can efficiently verify prop-
erties over sets of natural language (NL) requirements, they rely on
formal specifications that are difficult for non-experts to provide [3].

In recent years, LLMs have emerged as promising tools for nat-
ural language understanding [5] and have demonstrated growing
capabilities in tasks involving logical reasoning [25] and code gen-
eration [26]. Building on these strengths, recent work has explored
the use of LLMs to address the challenges of consistency check-
ing in natural language requirements. For instance, [3] proposes a
hybrid approach to verifying the satisfiability of string-related NL
requirements. The method leverages LLMs in two ways: (1) to de-
rive satisfiability outcomes and propose consistent string instances,
and (2) to generate both declarative (Satisfiability Modulo Theories
(SMT)) and imperative (Python) checkers to validate these outcomes.
Experimental results show that LLM-generated checkers not only
achieve high accuracy – reaching perfect test accuracy in some
Python-based cases – but also significantly improve the overall suc-
cess rate and F1-score of satisfiability prediction. This indicates that
LLMs can serve as both reasoning agents and generator-assistants
in formal verification pipelines, reducing reliance onmanual formal-
ization and enabling more scalable verification of NL requirements.

2.3 Error Taxonomies and Educational

Assessment

Error classification in educational settings is closely tied to learn-
ing theory and instructional design. Biggs’ theory of constructive
alignment [1] emphasizes aligning learning objectives, teaching
activities, and assessments around meaningful performances, of-
fering a foundation for designing error taxonomies that reflect
intended cognitive outcomes. Mayer’s Cognitive Theory of Multi-
media Learning [12] contributes a taxonomy of cognitive overload
scenarios, highlighting how instructional design can prevent errors
arising from excessive cognitive demand. Complementary insights
come fromCognitive Load Theory. Sweller argues that conventional
problem solving can hinder schema acquisition due to overlapping
cognitive demands, leading to surface-level errors [18]. Further,
Sweller introduces element interactivity to explain how intrinsic
content complexity influences error patterns [19]. Together, these
theories support error taxonomies that distinguish between con-
ceptual misunderstandings and cognitive overload, informing both
assessment design and instructional improvement.

Despite the richness of these educational error taxonomies, a gap
remains in connecting them with inconsistency classifications from
SE. While learning theories provide principled ways to interpret
student errors in terms of cognitive processes and instructional

alignment, they are rarely integrated with the practical catego-
rization of inconsistencies found in software-based educational
artifacts. Addressing this gap is important for building systems
that support automated assessment across heterogeneous artifacts
by aligning pedagogically meaningful error types with observable
inconsistencies in artifact design.

2.4 Research Positioning

The related work reveals several key research gaps that this work
addresses. First, existing consistency checking approaches focus
either on natural language requirements or structured software
artifacts, but not on the unique combination of both found in edu-
cational programming exercises. Second, while LLMs have shown
promise for consistency verification in SE contexts, their application
to cross-artifact educational consistency checking remains unex-
plored. Third, existing error taxonomies from educational research
lack integration with technical inconsistency classifications from
SE, limiting their applicability to digital learning environments.

This work bridges these gaps by introducing the first framework
for automated consistency verification across heterogeneous educa-
tional artifacts, grounded in both learning theory and SE practices.
We extend LLM-based consistency checking to the educational do-
main while developing a novel ontology that integrates pedagogical
and technical perspectives on inconsistency classification.

Complementary taxonomies from SE research further motivate
the ontology design. Kim and Kim classify identifier inconsistencies
into semantic, syntactic, and part-of-speech categories to automate
detection in large-scale systems [8]. Wang et al. extend this per-
spective to LLM-generated code and catalogue 24 inconsistency
types across formatting, semantic, expression, control-flow, and
fault-tolerance dimensions [22]. These taxonomies reinforce the
need to articulate both structural violations and semantic aliasing,
yet they rarely connect to pedagogical constructs. Foundational
definitions of inconsistency remain heterogeneous: some empha-
sise conflicting model assertions [16], whereas others describe rule
violations more informally [14]. The ontology aligns these perspec-
tives with educational theory, enabling automated analysis that
respects both technical precision and instructional coherence.

3 Conceptual Modelling

This section presents the conceptual foundation of this work by
first describing the nature of consistency issues in programming
exercises and the educational artifacts involved.We then introduce a
definition of consistency grounded in learning theory, emphasizing
its cognitive and pedagogical implications. Finally, we describe an
ontology-based model that captures the structure, dependencies,
and inconsistency types across heterogeneous artifacts, forming
the basis for automated consistency detection and analysis.

3.1 Problem Description

Modern programming exercise platforms, e.g. AnonLMS, support a
variety of heterogeneous artifacts that make up a complete exercise.
Some typical artifacts include: Learning Objectives, which define the
intended competencies or skills students are expected to acquire
through the exercise; Problem Statements, which describe the task
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to be completed, often in natural language, and specify the require-
ments that guide the student’s implementation; Solution Repository,
which is a code repository containing an example solution that
fulfill the task described in the Problem Statement and serve as the
basis for correctness and performance evaluation; Template Reposi-
tory, which provides starter code or scaffolding to guide students
in their implementation; and Test-Suite Repository, which includes
test cases used to evaluate the correctness of student submissions.

All of the above artifacts are created and maintained by instruc-
tors and teaching staff, such as tutors or course instructors. Among
them, only the Problem Statement and the Template Repository
are typically visible to students during the exercise phase. When
multiple contributors are involved in the development process, con-
sistency issues can emerge. These are unintended contradictions
or misalignments between artifacts that may confuse students or
undermine the learning objectives.

For example, consider a scenario where the problem statement
instructs students to implement a method calculateTotal() that
computes the sum of all items, but the provided template contains a
stub for getPrice() instead. Students must reconcile this discrep-
ancy by determining whether to modify the existing stub or create
a new method, diverting cognitive resources from the intended
learning objective of implementing the calculation logic. Such in-
consistencies can reduce learning effectiveness and create unfair
assessment conditions when students make different assumptions
about the intended implementation approach.

We enable automated assessment of consistency issues across
these artifacts by first understanding the dependencies among them.
It is also essential to model how information flows between arti-
facts and how discrepancies might affect instructional coherence or
evaluation validity. We introduce a high-level definition of consis-
tency issues in the context of programming exercises, grounded in
learning theory, to scope the problem. Finally, a clearer understand-
ing of the typical inconsistency patterns is needed. This calls for
a principled categorization scheme that can distinguish pedagog-
ically meaningful inconsistencies from superficial or intentional
variations.

3.2 Theoretical Foundation and Definition of

Consistency

The definition of consistency issues is grounded in established the-
ories from educational psychology and instructional design, which
explain how learners process information and how inconsistencies
impact cognitive load. Mayer’s Coherence Principle [12] and Biggs’
Constructive Alignment theory [1] emphasize aligning instruc-
tional components to avoid cognitive distractions. Inconsistencies
across educational artifacts can therefore disrupt pedagogical de-
sign by forcing learners to reconcile conflicting information rather
than focus on intended learning objectives. Cognitive Load The-
ory [18, 19] further demonstrates that learners have limitedworking
memory capacity; contradictory content diverts cognitive resources
and increases extraneous load [12]. Building on these insights, we
define a consistency issue as follows, highlighting the impor-
tance of distinguishing pedagogically intentional variations from
unintentional inconsistencies that hinder learning:

Consistency Issue: An unintentional violation of instruc-
tional coherence that creates extraneous cognitive load by
presenting contradictory information about the same educa-
tional element.

3.3 Ontology-Based Modeling of Educational

Artifacts and Consistency Issues

In this paper, we define a domain ontology [17] to formally capture
the structure and interdependencies of educational artifacts used
in programming exercises. This ontology is then instantiated as
a knowledge graph [7], where real-world artifacts and detected
consistency issues are represented as nodes and edges. The use of
an ontology provides a shared schema to model diverse artifact
types (e.g., problem statements, template code, test suites) and their
semantic roles in the learning process. Initializing this ontology as
a knowledge graph with concrete exercise artifacts enables flexible
querying, structured metadata annotation (e.g., severity, source
location), and support for tracking artifact evolution over time.

Figure 1 shows that the proposed ontology includes core ar-
tifact types such as Learning Objective, Problem Statement,
Template Repository, Solution Repository, and Test Suite
Repository, all of which are modeled as subtypes of the generic
Artifact class. Each artifact is associated with specific relation-
ships that reflect their functional dependencies. For example, the
provides_scaffold relation connects a template to a problem
statement, while the tests relation connects test suites to code
repositories.

Consistency issues are modeled as typed binary relations be-
tween artifacts using the term inconsistent_with. The ontology
provides a five-category taxonomy of consistency issues: Struc-
tural, Semantic, Assessment, Temporal, and Scope. These cat-
egories were derived from an analysis of established theories in
educational psychology (e.g., Mayer’s Coherence Principle [12],
Biggs’ Constructive Alignment [1], Sweller’s Cognitive Load The-
ory [19]) and SE research on consistency verification [16], which
collectively address different dimensions in which inconsistencies
can hinder learning (coherence, alignment, sequencing, and cov-
erage). While this taxonomy is not exhaustive and remains under
active development, it provides a principled foundation for catego-
rizing pedagogically significant inconsistencies. Each category is
characterized below.

Structural Inconsistencies occur when overlapping elements
across different artifacts make conflicting assertions that cannot be
simultaneously satisfied. These prevent students from implement-
ing solutions that satisfy both the natural language specification
and the provided code structure, drawing on SE research on syn-
tactic vs. semantic distinctions [16].

Semantic Inconsistencies arise when the same knowledge ele-
ment is represented differently across educational artifacts, creating
cognitive mapping barriers. Students must reconcile conflicting con-
ceptual representations rather than focus on learning objectives,
increasing extraneous cognitive load as explained byMayer’s theory
of multimedia learning [12] and semantic consistency distinctions
from SE [16].
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Figure 1: Educational artifact inconsistency ontology modeling five artifact types (Problem Statement, Template Repository,

Solution Repository, Test-Suite Repository, Learning Objective) and five theoretically grounded inconsistency categories;

Structural and Semantic sub-categories are partially instantiated and evaluated, while Assessment, Temporal, and Scope

remain conceptually defined for future work

Assessment Inconsistencies occur when instructional content
and evaluation criteria are misaligned. Students cannot demonstrate
learning effectively when assessment demands conflict with instruc-
tional design, violating Biggs’ constructive alignment principles [1]
and Webb’s alignment of standards and assessments [23, 24].

Temporal Inconsistencies emerge when sequencing, pacing, or
prerequisite relationships conflict with pedagogical design princi-
ples. These force simultaneous processing of elements that should
be learned serially, creating cognitive overload as predicted by
Sweller’s cognitive load theory [19] and Webb’s sequencing criteria
for learning progression [24].

Scope Inconsistencies appear when breadth, depth, or coverage
mismatches create uncertainty about learning expectations. Stu-
dents cannot determine appropriate knowledge boundaries or per-
formance levels, leading to incomplete learning in line with Webb’s
depth-of-knowledge and content coverage frameworks [23, 24].

Figure 1 illustrates the ontology structure and shows detailed sub-
categories for Structural and Semantic inconsistencies. These
two categories were selected for initial instantiation and evalua-
tion because they are the most frequent in programming exercises
and most directly confound student implementation. The present
release covers a narrow slice of the envisioned taxonomy: Struc-
tural inconsistencies currently include method return type mis-
matches, method parameter mismatches, constructor parameter
mismatches, attribute type mismatches, and visibility mismatches,
while Semantic inconsistencies are limited to identifier naming
inconsistencies with additional sub-categories left for future work.
The remaining three categories are conceptually defined in the on-
tology but reserved for future instantiation and validation, ensuring
that the evaluation remains focused while keeping the ontology
extensible.

Each consistency issue is linked to its source and target arti-
facts and enriched with descriptive properties such as severity and
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Listing 1: Context rendering with line numbers and file paths

for precise issue localization.

===== Problem Statement =====
problem_statement.md
1 | # H01E02 - Lectures
2 | Implement a class representing a lecture.
3 | 1. Add attributes: `lectureName`, `numberOfInscribedStudents`
4 | 2. Create a constructor that initializes every attribute.

===== Template Repository =====
template_repository
`-- src
`-- com
`-- example
`-- exercise
|-- Lecture.java
`-- Main.java

template_repository/src/com/example/exercise/Lecture.java
1 | package com.example.exercise;
2 | public class Lecture {
3 | // TODO 1.1: Add attributes from the UML diagram
4 | // TODO 1.2: Add the constructor
5 | }

location. This structure allows us to represent, organize, and ana-
lyze pedagogically significant inconsistencies across heterogeneous
educational components in a unified and extensible framework.

4 LLM-Based Inconsistency Detection System

We implement an automated system that detects consistency issues
across programming exercise artifacts using LLMs. The system pro-
cesses problem statements, code templates, and test files to identify
contradictions that confuse students, reducing manual QA effort for
instructors. Building on the ontology-based model described in Sec-
tion 3, this system integrates the ontology-based data model in two
ways. First, the ontology enriches the instruction given to the LLM
with context-aware guidance, such as the taxonomy and definitions
of consistency issues, enabling the model to interpret various types
of consistency issues more effectively. Second, the ontology pro-
vides a structured schema that guides the format of the LLM’s out-
put. Specifically, the properties defined in the inconsistent_with
relation are used as keys for the model’s response. The resulting
outputs are interpretable and machine-actionable for downstream
processing and evaluation.

4.1 System Architecture

The system employs two specialized checkers operating in parallel:
a Structural checker that detects signature, parameter, and visi-
bility conflicts within the currently implemented subtypes, and a
Semantic checker that identifies naming inconsistencies between
problem descriptions and code implementations. Each checker ex-
ecutes the same three-step pipeline optimized for reliability and
cost efficiency. The modular architecture supports extensibility,
letting additional Structural refinements as well as Assessment,
Temporal, or Scope modules plug in without altering existing
components.

Step 1: Context Rendering. The system transforms heterogeneous
exercise artifacts into a unified prompt that retains markdown
structure for problem statements, adds line numbers to code files

for precise localization, and summarizes repository organization for
cross-artifact analysis (Listing 1). Language-specific filters restrict
the rendered context to relevant files such as Java sources under
src/, and optional solution and test repositories are included when
present.

Step 2: Reasoning Prompt Construction. Each checker receives
prompts that encode educational reasoning principles and include
few-shot decisions. The structural prompt enumerates the five
Structural sub-categories currently supported and clarifies which
pedagogical scaffoldings remain intentional. The semantic prompt
establishes the validator role, references cognitive load theory, and
guides the model through a four-step analysis that spans entity
identification, cognitive mapping, contextual validation, and incon-
sistency classification. Listing 2 sketches the condensed prompt
template and its decision criteria, while a shared context prefix lets
LLM-providers reuse cached context across runs to reduce cost.

Step 3: Structured LLM Invocation. The system invokes reason-
ing models with JSON schemas aligned to the ontology, enabling
deterministic parsing and downstream processing. Parallel struc-
tural and semantic chains emit typed ConsistencyIssue objects,
which the pipeline merges before serializing results with timing
and cost summaries. Figure 2 lists the fields each checker must
fill: severity, the description used as the pedagogical rationale, a
suggested remediation, and the referenced artifact locations. All
prompts, schemas, and checker implementations are released via
the PECV-bench replication package (Section 6).

Listing 2: Simplified semantic checker prompt showing four-

step reasoning framework and decision criteria.

# MISSION
You are a Semantic Consistency Validator for programming exercises.
Detect
UNINTENDED semantic inconsistencies where the same conceptual
entity is
referenced with different names across artifacts.

# ANALYSIS FRAMEWORK
## STEP 1: Conceptual Entity Identification
For each entity in the problem statement:
1. What is the core concept being described?
2. How is this concept represented in template and solution?
3. Is the naming relationship clear for students?

## STEP 2: Cognitive Mapping Assessment
- INTRINSIC LOAD: Names should support core learning objectives
- EXTRANEOUS LOAD: Inconsistent naming creates additional mental
effort
- GERMANE LOAD: Names should help build coherent mental models

## STEP 3: Contextual Validation
Check for educational necessity and technical requirements

## STEP 4: Inconsistency Classification
Raise an issue only if: same conceptual entity + clear mapping
confusion +
unintentional oversight + cognitive burden + no technical necessity

# EXAMPLES
REPORT: Problem "calculateTotal()" -> Template "getPrice()"
DO NOT REPORT: Problem "student name" -> Template
"getName()/setName()"
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Consistency Issue

category: Category
subCategory: SubCategory
description: String
suggestedFix: String

Artifact Location

filePath: String
startLine: Number
endLine: Number

«enumeration»
Issue Severity

HIGH
MEDIUM
LOW

severity

2..*

«enumeration»
Artifact Type

PROBLEM_STATEMENT
TEMPLATE_REPOSITORY
SOLUTION_REPOSITORY
TEST_SUITE_REPOSITORY

type

Figure 2: Consistency issue data model defining the struc-

tured schema for detected inconsistencies. Each consistency

issue contains four textual attributes and severity assessment.

The composition relationship (a whole–part association link-

ing each issue to its reported artifact locations) requires at

least two artifact locations to establish inter- or cross-artifact

relationships, with each location specifying file path, line

interval, and artifact type.

4.2 System Characteristics

Computational Performance. The system processes real Java ex-
ercises from programming courses, with mean analysis times span-
ning a few dozen seconds per exercise depending on the reasoning
model and per-run costs remaining in the low-cent range. The
parallel architecture reduces total processing time by roughly half
compared to sequential checking, making the approach viable for
routine educational use while maintaining detection quality. De-
tailed performance benchmarks across different models are pre-
sented in Section 5.

Conceptual Strengths and Limitations. The LLM-based approach
enables cross-modal reasoning between natural language and code,
handling cases where the same concept appears differently across
artifacts. Detection accuracy depends on prompt quality and model
capability, and the system must distinguish genuine issues from
intentional pedagogical variations. The current implementation
focuses on Structural and Semantic sub-categories, leaving fur-
ther refinements and additional categories for future work, while
the modular architecture supports independent development of
new checkers.

Scope and Scalability Constraints. The system currently handles
Java exercises with specific artifact structures (problem statements,
template repository, solution repository). Extension to other pro-
gramming languages requires prompt adaptation and validation.
Token limits constrain analysis of large codebases, though edu-
cational exercises typically fall within manageable bounds. Con-
text handling capabilities vary significantly across reasoning mod-
els: while the reference deployment with o4-mini supports up to
200,000 tokens, other models may have different limits affecting ex-
ercise complexity that can be processed. The reasoning model costs
and performance characteristics depend heavily on the selected
provider, necessitating model-specific optimization for different
institutional deployment scenarios.

5 Empirical Evaluation

We benchmark the LLM-based inconsistency detector on synthet-
ically perturbed programming exercises to answer the following
research questions (RQ):
RQ1 Detection Performance: How accurately does the system

detect and localize consistency issues across categories?
RQ2 Deployment Feasibility:What accuracy-latency-cost trade-

offs do different LLMs offer for practical use?

5.1 Dataset, Exercises, and Gold Standard

Creation

We evaluate the detector on three Java programming assignments
that span the spectrum from simple to advanced. Each assignment
provides a problem statement, template repository and solution
repository. We create a controlled benchmark by synthetically in-
jecting consistency issues into these artifacts. H01E01–Lectures is
a basic object-oriented design exercise requiring implementation
of a single Lecture class with simple attributes and accessor meth-
ods. H02E02–Panic_at_Seal_Saloon is a medium-complexity sce-
nario with several interacting classes (e.g., “Seal” and “Saloon”) plus
shared state. H05E01–Space_Seal_Farm is an advanced assignment
involving inheritance hierarchies and abstract classes to model
different seal species on a farm.

For Lectures, Panic_at_Seal_Saloon, and Space_Seal_Farm, we
created 30, 29, and 32 perturbed variants respectively, totaling 91
variants. Each variant contains one injected consistency issues (two
farm variants contain two dependent issues), yielding 93 issues in
the gold standard. Issues fall into six sub-categories: Identifier Nam-
ing Inconsistency (23), Method Return-Type Mismatch (19), Attribute
Type Mismatch (17),Method Parameter Mismatch (12), Visibility Mis-
match (12) and Constructor Parameter Mismatch (10). The issues are
intentionally distributed across artifacts to require cross-artifact
reasoning: 89 issues touch the problem statement, 90 the solution
repository, and 40 the template code, and many span multiple arti-
facts. Analyzing injection patterns, 44% of variants modify only the
solution repository, 32% alter problem statements, and 21% change
template code, while 3% span multiple repositories. On average,
each variant changes 11.3 lines of code. The PECV-bench replica-
tion package (Section 6) preserves the variant bundles, prompts,
and annotations for direct reuse.

Injections were generated semi-automatically. GitHub Copilot
Agent powered by Claude Sonnet 4 proposed diverse patches via
unified diffs. The authors reviewed, edited or discarded propos-
als to ensure exactly one primary issue per variant and to avoid
residual problems. We built the gold annotations by first letting the
detector propose spans and then manually refining and aggregating
them: spans were narrowed, merged or shifted to the most relevant
lines so that instructors can locate issues quickly. Consequently the
gold spans are “human-readable” rather than exhaustive, introduc-
ing fuzziness in span boundaries that motivates the overlap-based
evaluation described next.

5.2 Metrics and Matching

We answer RQ1 Detection Performance by inspecting both how
often the detector spots an issue and how precisely it locates that
issue. We count a detection as a true positive (TP) when it matches
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a gold issue, a false positive (FP) when it has no gold counterpart,
and a false negative (FN) when a gold issue remains unmatched.
Precision 𝑃 = TP

TP+FP therefore captures how many reported issues
are correct, while recall 𝑅 = TP

TP+FN captures how many genuine
issues the detector recovers. We summarize the balance between
precision and recall with the harmonic mean 𝐹1 = 2𝑃𝑅

𝑃+𝑅 .
Precision measures the share of model findings that truly exist

in the gold standard, telling instructors how many suggested issue
reports deserve attention. Recall measures the share of gold issues
the detector successfully surfaces, indicating howmany problematic
cases reach the instructor without extra searching.

F1 provides a single summary by combining precision and recall
through their harmonic mean. High F1 therefore signals that the
detector keeps false alarms in check without missing many genuine
issues, which aligns with instructors’ need to balance confidence
in automated issue reports against the time they spend reviewing
them.

Human annotators draw issue spans differently, so we treat local-
ization as a fuzzy overlap problem. We compute span F1 using the
Dice coefficient 2 |𝐴∩𝐵 |

|𝐴 |+|𝐵 | , where𝐴 and 𝐵 are the sets of affected lines
marked by the detector and the gold standard. This overlap rewards
predictions that capture the relevant lines even when boundaries
differ by a few statements.

We also report Intersection-over-Union (IoU) = |𝐴∩𝐵 |
|𝐴∪𝐵 | , the Jac-

card overlap used in detection research [6, 13]. IoU complements
span F1 by penalizing predictions that cover large spans without
matching the instructor-authored core lines.

Predicted and gold issues are paired greedily in a one-to-one
manner to maximize the overall Dice score, following established
matching procedures for partial-span tasks [10, 20]. Any prediction
that fails to match becomes a false positive. Any gold issue that
remains unmatched turns into a false negative. For RQ2Deployment
Feasibility we additionally log mean runtime, token usage, and
dollar cost per detector run. Suggested remediations and severity
levels do not influence these metrics because we evaluate detection
capability independently from remediation guidance.

5.3 Protocol

We evaluate four reasoning models: OpenAI o4-mini (2025-04-16),
xAI Grok 3 Mini (2025-06-10), Google Gemini 2.5 Flash (2025-06-
17) and Google Gemini 2.5 Flash Lite (preview 2025-06-17), setting
reasoning effort to medium.1 Each model was run three times on
every perturbed variant. With 91 variants and four models, this
amounts to 1 092 expected runs. In practice, 42 Gemini 2.5 Flash
Lite runs and one Gemini 2.5 Flash run failed because the model
entered a self-referential reasoning loop when confronted with the
structural prompt. We therefore analyze 1 049 runs: 273 for o4-mini,
273 for Grok 3 Mini, 272 for Gemini 2.5 Flash and 231 for Gemini
2.5 Flash Lite.

5.4 Results

Table 1 exposes a detector that favors recall over precisionwhile still
completing in seconds rather than the lengthy manual QA passes
1o4-mini was accessed via Azure OpenAI. The other models were queried through
OpenRouter with the cheapest available provider first. Latency and cost numbers
reflect this setup.

instructors typically perform. OpenAI o4-mini is the only model
with F1 above 0.70. It reaches F1 0.75 and recall 0.91 but still raises
148 false positives, which means roughly one extra issue report
for every 1.7 correct detections. Gemini 2.5 Flash and Gemini 2.5
Flash Lite push recall to 0.95 and 0.91 yet generate 623 and 288 false
positives, which would swamp instructor queues without triage
support. Grok 3 Mini trims the noise to 222 false positives while
keeping recall 0.84, although precision 0.51 still leaves noticeable
follow-up work. Precision therefore remains the bottleneck for
adoption, even though the runs themselves complete in seconds.

Runtime and cost numbers highlight the speed advantage. Grok 3
Mini finishes a sweep in 14.3 s at roughly $0.006 per run, about one
quarter the cost of o4-mini and far faster thanmanual walkthroughs.
Gemini 2.5 Flash Lite sits at 16.9 s and $0.0063 but offers little relief
from false alarms. No configuration delivers both low latency and a
short issue list, so practical deployments will need either additional
filtering or prompt pruning to exploit the raw speed safely.

The model also struggles once descriptions become narrative-
heavy; o4-mini’s F1 drops from 0.79 on Lectures to 0.71 on Space_
Seal_Farm, and Gemini 2.5 Flash Lite follows the same pattern,
indicating that long-form requirements and intertwined classes
still confuse the prompts. Category analysis (Table 2) explains the
gap. Structural mismatches reach F1 above 0.80 and span F1 near
0.70, so signature-level contradictions remain easy to localize. By
contrast, Semantic identifier shifts and method-parameter changes
fall to F1 0.72 and 0.58 with precision as low as 0.41. These findings
point toward either richer ontology cues or human confirmation
for ambiguous naming cases.

Failure analysis underscores the need for safeguards. Gemini 2.5
Flash Lite aborted 42 of 273 scheduled runs because the structural
prompt triggered a self-referential loop, and the full Flash model
failed once under the same conditions. Production deployments
require extra consideration with simplified prompts to avoid silent
coverage gaps.

5.5 Findings

We summarize the quantitative evidence per research question,
highlighting where the detector already adds value for instructors
and which safeguards keep that value reliable.

RQ1 Detection Performance. o4-mini delivers F1 0.75
with recall 0.91 and span F1 0.68, producing a concise short-
list that points instructors to the right lines. Precision 0.63
(148 false positives, roughly one extra issue report per 1.7
correct detections) is the main remaining friction, so light
prioritization keeps reviews efficient.

Across 273 runs, o4-mini surfaces 254 of 279 annotated issues
while missing 25. The high recall and overlap metrics (IoU 0.57)
mean reviewers open issue reports that already sit on the prob-
lematic code, turning verification into a quick yes-or-no check.
Structural categories hold F1 above 0.84 with IoU up to 0.69,
so instructors can approve those reports with minimal hesitation,
though these metrics apply only to the subset of Structural sub-
types we currently implement. Semantic naming and method-
parameter mismatches reach F1 0.72 and 0.58 with precision below
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Table 1: Overall results across the 1 049 analysed runs. Span F1 and IoU measure average line-overlap quality for matched

issues. Time and Cost are mean per run.

Model TP FP FN Prec. Rec. F1 Span F1 IoU Time (s) Cost ($)

OpenAI o4-mini 254 148 25 0.63 0.91 0.75 0.68 0.57 32.96 0.0338
xAI Grok 3 Mini 233 222 46 0.51 0.84 0.63 0.64 0.53 14.31 0.0061

Google Gemini 2.5 Flash 263 623 15 0.30 0.95 0.45 0.60 0.47 26.38 0.0244
Google Gemini 2.5 Flash Lite 216 288 21 0.43 0.91 0.58 0.59 0.49 16.97 0.0063

Table 2: Per-ontology subcategorymetrics for o4-mini. Struc-

turalmismatches (return types, constructor parameters, vis-

ibility and attribute types) show higher F1 and localization

accuracy than Semantic naming and parameter mismatches.

Category Prec. Rec. F1 Span F1 IoU

Method Return-Type Mismatch 0.80 0.96 0.87 0.72 0.62
Constructor Parameter Mismatch 0.74 0.97 0.84 0.61 0.50
Visibility Mismatch 0.81 0.81 0.81 0.80 0.69

Attribute Type Mismatch 0.60 0.94 0.73 0.63 0.51
Method Parameter Mismatch 0.41 1.00 0.58 0.68 0.55
Identifier Naming Inconsistency 0.63 0.83 0.72 0.64 0.53

0.65, yet their localized spans and short rationales still provide help-
ful guidance when paired with confidence, severity, or batching
cues; in this release semantic coverage is limited to identifier nam-
ing discrepancies, leaving additional semantic variants for later
work. Performance stays strong on compact exercises (F1 0.79 on
Lectures) and tapers to 0.71 on narrative-heavy Space_Seal_Farm,
signalling where richer prompts can raise precision further.

RQ2 Deployment Feasibility. Grok 3 Mini answers the
feasibility question with speed and cost (14.3 s per run,
$0.006, recall 0.84), while o4-mini trades time and budget
(32.9 s, $0.0338) for higher precision 0.63 and span F1 0.68.
Instructors can therefore pick between cheaper exploratory
passes and more trustworthy confirmations.

Measured against o4-mini, Grok 3 Mini cuts latency by 56% and
cost by 82% yet keeps most recall (0.84 versus 0.91). The trade-
off shows up in precision and false positives: Grok 3 Mini raises
222 spurious issue reports (precision 0.51), whereas o4-mini holds
that number to 148 at precision 0.63. Both models deliver similar
localization quality (span F1 0.64 vs. 0.68). These results indicate that
resource-constrained settings gain from Grok 3 Mini’s throughput,
while high-stakes reviews still benefit from o4-mini’s cleaner issue
list. The detector is deployable today so long as instructors align the
chosen model with their tolerance for triage effort versus runtime
and cost.

5.6 Threats to Validity

We discuss the study limitations following Runeson and Höst’s
validity framework [15].

Internal Validity: The benchmark relies on synthetic perturba-
tions proposed by Claude Sonnet 4 through GitHub Copilot Agent

and edited by the authors. These diffs can leave lexical fingerprints
that differ from organic instructor edits, potentially biasing the
detector toward easier cases. We filtered prompts that surfaced
trivial cues and enforced single-issue variants, yet we lack inter-
rater agreement statistics because the same authors injected and
reviewed issues. Gold spans originated from model suggestions, so
anchoring bias may persist despite iterative shrink-to-fit passes.

Construct Validity. The evaluation reports precision, recall, F1,
span F1 (Dice), and IoU on line spans to approximate instructor
review. True positives are predicted issues matched one-to-one
with a gold issue, false positives are unmatched predictions, and
false negatives are unmatched gold issues, yet severity labels do not
influence the metrics. Dice overlap tolerates boundary differences,
but it cannot gauge whether suggested remediations meaningfully
lower cognitive load. We evaluate only injected Structural and
Semantic categories, so the study does not assess pedagogical
impact or downstream effects on student submissions.

External Validity.All exercises stem from a single German institu-
tion’s Java curriculum that follows Artemis repository conventions.
The pipeline has not been validated on exercises authored in other
languages than Java. Only Structural and Semantic inconsisten-
cies were instantiated, so findings cannot generalize to assessment
rubrics, pacing plans, or scope misalignments. Prompts assume
English artefacts; multilingual deployments or accessibility-first
templates require fresh evaluation.

Technological Limitations. The detector depends on closed-source
reasoning models whose providers can revise token limits, safety
filters, or pricing without notice. The prompts target medium rea-
soning effort and large context windows; courses with bigger repos-
itories or providers with tighter limits may experience silent trun-
cation. We did not benchmark open-weight baselines, so portability
to sovereign hosting environments remains unverified.

6 Reproducibility Artifacts

Reference implementation: The PECV-bench replication package
(v1.0.0) at commit 188a6d6 archives the code, prompts, ontology
assets, and evaluation outputs used in this paper. The artefact is
published on Zenodo2 and mirrored on GitHub.3 Installing the
repository as a Python package exposes the pecv-bench orchestra-
tion CLI and the pecv-reference checker described in Section 4,
while the bundled .env.example documents provider credentials,
model identifiers, and tracing flags. The software component is
released under the MIT license to enable reuse and extension.

2DOI: https://doi.org/10.5281/zenodo.17260262
3https://github.com/ls1intum/PECV-bench

https://doi.org/10.5281/zenodo.17260262
https://github.com/ls1intum/PECV-bench
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Benchmark dataset: Under data/, the archive contributes 91
perturbed Java variants across three programming exercises. Each
bundle aligns problem statements, templates, solutions, test-suite
repositories, and annotations that tag the injected inconsistency
sub-category, matching the evaluation reported in Section 5. The
dataset is released under CC-BY-4.0 so that instructors can adapt
the materials for their own studies while preserving attribution.

Evaluation and reporting: The preset pecv-reference.yaml cap-
tures the runs reported in Table 1. Invoking the run-benchmark
subcommand with the pecv-reference target and recorded model
arguments reproduces the evaluation, and the report subcommand
regenerates aggregate tables and metrics by aligning predictions
with gold annotations. Together these scripts provide a single, ver-
sioned entry point that satisfies ACM reproducibility guidance for
implementation, data, evaluation harness, and regenerated reports.
Figure 3 provides a high-level view of this end-to-end pipeline.

PECV Dataset

<<consistency checker>>
PECV Reference

Inconsistent
Programming Exercise

Variant
Consistency Issue

Run Benchmark Report
Results

PECV-bench

Evaluation
Results

Figure 3: PECV-bench distills the study into a versioned,

single-entry pipeline that ties perturbed exercises to con-

sistency checking and reproducible reporting, enabling end-

to-end replication of our results.

7 Discussion

The quantitative study confirms that LLM pipelines recover the
majority of injected inconsistencies, yet a precision ceiling around
0.63 leaves instructors with a persistent triage burden. Reviewers
therefore receive value only when the detector feeds scalable priori-
tization, such as severity gating or lightweight grouping by artifact
scope, rather than a raw issue list; without that support, triage
effort quickly erodes much of the promised time savings.

Category-level evidence exposes a maturity gap within the ontol-
ogy. Structural checkers already capture return-type, visibility,
and constructor mismatches with stable localization, but Seman-
tic reasoning degrades once narratives become longer or naming
patterns drift across artifacts. Both categories remain underdevel-
oped, covering only a subset of the theorized subtypes, while the
Assessment, Temporal, and Scope classes stay purely concep-
tual, so the ontology still falls short of comprehensive coverage for
multi-artifact pedagogy.

The evaluation design further constrains the conclusions. We
rely on synthetic perturbations authoredwith LLM assistance inside
a single Java curriculum, which risks distribution shift when fac-
ing organically produced inconsistencies, alternative programming
languages, or different institutional conventions, and the manually
authored severity and suggested-fix fields remain unvalidated, so
end-to-end automation claims stay tentative.

Model-specific failure modes such as Gemini’s self-referential
loops demonstrate the need for careful considerations such as adap-
tive prompt selection and downstream filters that learn from past
instructor decisions. Collecting evidence with real instructors will
clarify acceptable false-positive rates, the usefulness of confidence
estimates, and how prompts should evolve alongside reviewer tool-
ing. Section 6 provides the reproducibility scaffolding for that work,
but turning the detector into a sustainable QA assistant still de-
mands evaluation of severity and confidence scoring, iterative work-
flow refinement, and deliberate expansion of both the dataset and
the ontology.

8 Conclusion

The presented ontology, detector pipeline, and PECV-bench corpus
demonstrate that automated cross-artifact consistency verification
for programming exercises is feasible with current reasoning mod-
els. Structural checks already deliver actionable precision-recall
trade-offs that point instructors to signature-level violations, while
Semantic coverage remains fragile and depends on disciplined
human review. Together, these contributions establish the first re-
producible baseline for multi-artifact educational QA and expose
the design space for ontology-guided LLM reasoning.

Nevertheless, the study reflects a Java-only curriculum, relies on
synthetic perturbations, and validates only subsets of the Struc-
tural and Semantic taxonomies. The companion severity and
suggested-fix fields stay human-authored and outside the quantita-
tive evaluation, limiting the ability to claim end-to-end automation.
Bridging these gaps requires broader datasets, richer ontology in-
stantiations, and empirical feedback from authentic deployments.

Future work focuses on six directions. Benchmarking additional
reasoning models such as GPT-5 mini and open-weight alternatives
will map precision, recall, latency, and cost envelopes. Calibrat-
ing severity and confidence scoring against instructor judgments
comes next before integrating suggested remediations. We will
refine prompts, aggregation tooling, and reviewer interfaces so
instructors can prioritize the most urgent findings instead of sift-
ing through repetitive issue reports. Extending PECV-bench with
Python, C, and multi-institution datasets will capture authentic
instructor-authored inconsistencies. Completing the Structural
and Semantic subtypes while instantiating Assessment, Tempo-
ral, and Scope categories expands coverage. Running classroom
pilots will instrument real instructor use and surface integration
needs. The replication package (Section 6) scaffolds these studies
and invites the community to evolve the ontology, approaches, and
datasets toward production-ready, multi-language consistency QA.
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