Iris: An Al-Driven Virtual Tutor For Computer Science Education

Patrick Bassner
patrick.bassner@tum.de
Technical University of Munich
Munich, Germany

ABSTRACT

Integrating Al-driven tools in higher education is an emerging area
with transformative potential. This paper introduces Iris, a chat-
based virtual tutor integrated into the interactive learning platform
Artemis that offers personalized, context-aware assistance in large-
scale educational settings. Iris supports computer science students
by guiding them through programming exercises and is designed
to act as a tutor in a didactically meaningful way. Its calibrated
assistance avoids revealing complete solutions, offering subtle hints
or counter-questions to foster independent problem-solving skills.
For each question, it issues multiple prompts in a Chain-of-Thought
to GPT-3.5-Turbo. The prompts include a tutor role description and
examples of meaningful answers through few-shot learning. Iris
employs contextual awareness by accessing the problem statement,
student code, and automated feedback to provide tailored advice.

An empirical evaluation shows that students perceive Iris as effec-
tive because it understands their questions, provides relevant sup-
port, and contributes to the learning process. While students con-
sider Iris a valuable tool for programming exercises and homework,
they also feel confident solving programming tasks in computer-
based exams without Iris. The findings underscore students’ ap-
preciation for Iris’ immediate and personalized support, though
students predominantly view it as a complement to, rather than a
replacement for, human tutors. Nevertheless, Iris creates a space
for students to ask questions without being judged by others.

CCS CONCEPTS

« Applied computing — Interactive learning environments;
« Social and professional topics — Computer science educa-
tion.

KEYWORDS

Generative Al; ChatGPT; Large Language Models; Interactive Learn-
ing; Education Technology; Programming Exercises; CS1

Preprint — do not distribute.

Eduard Frankford
eduard.frankford@uibk.ac.at
University of Innsbruck
Innsbruck, Austria

Stephan Krusche
krusche@tum.de
Technical University of Munich
Munich, Germany

1 INTRODUCTION

Pursuing scalable, personalized, and compelling learning experi-
ences gains importance in computer science education, especially
considering the challenges posed by large courses. With enroll-
ments exceeding 1,000 students, traditional educational models
falter. Even tutoring groups tend to be larger than optimal in these
settings, making 1-on-1 interactions between students and tutors
a rarity. Chatbots have emerged as facilitators of direct conversa-
tional interactions, simplifying access to information for students
[25] [27] [8]. Traditional chatbots often deliver scripted and pre-
determined responses, needing more adaptability to meet diverse
learning needs or to understand and provide nuanced help.

In computing education, the use of large language models (LLMs)
has gained attention as a potential solution to the challenges associ-
ated with solving programming problems [26]. These models offer
a promising avenue for providing effective support and guidance
in programming tasks. Recent research suggests that code explana-
tions generated by LLMs are easier to comprehend for students than
explanations created by peers [18]. However, stand-alone artificial
intelligence (AI) tools such as ChatGPT are typically not natively
connected to exercise code or exercise descriptions. Instead, they re-
quire students to manually provide the exercise problem statement
and their code submission. This process is time-consuming and
challenging, as it relies on the student’s ability to accurately convey
the necessary information to the Al. Additionally, these tools typi-
cally provide complete solutions to student queries upon request,
which can have a negative impact on their learning outcome [11].
Therefore, it is crucial for chatbots in educational settings to refrain
from disclosing complete solutions and instead offer subtle hints or
counter-questions.

We introduce Iris to address these issues: a chat-based virtual
tutor integrated within the interactive learning platform Artemis'
[14-16]. In this paper, we seek to address the following research
questions:

RQ1 How do students perceive the effectiveness of Iris?

RQ2 Do students feel more comfortable asking Iris questions than
a human tutor or the course professor?

RQ3 Do students exhibit subjective reliance on Iris?

The paper is structured as follows: Section 2 provides an overview
of the related work. Section 3 describes the implementation and de-
sign of Iris. Section 4 outlines the evaluation methodology. Section
5 presents the results. Section 6 derives findings from the results.
Section 7 discusses the findings and implications. Section 8 outlines
the limitations of this study. Section 9 concludes the paper and
outlines future work.

Uhttps://artemisapp.github.io; https:/github.com/lslintum/Artemis

https://orcid.org/0009-0006-0434-6182
https://orcid.org/0009-0005-5959-4936
https://orcid.org/0000-0002-4552-644X
https://artemisapp.github.io
https://github.com/ls1intum/Artemis

BB Binary Search | Easy

Points: 10 Assessment: automatic @

& Opencodeeditor & Clone Repository

Binary Search
Penguin Supermarket

Patrick Bassner, Eduard Frankford, and Stephan Krusche

e Iris

Hey! I don't understand how the valueRange relates to the higher and lower
results. Can you explain that?
Sure! In the class, the attribute represents the range of
indices in which the searched value can be found. The and
attributes represent the indices of the lower and higher bounds of the value
range, respectively.
During the binary search, the search range is divided in half at each iteration.
If the middle element of the search range is greater than the searched value,
the search continues in the lower half of the range.

Fortunately, thanks to you, our little penguins can find their way back even after a snowstorm. However, this adventure makes them quite hungry, so Mama Penguin always
needs to have enough fish in stock. Luckily, the cold at the South Pole doesn't spoil the fish too quickly, so Mama Penguin can buy multiple fish at the supermarket. Now, if
only the kids weren't so picky... They only want fish of a certain size. They can't eat fish that are too big, and fish that are too small don't fill them up! Fortunately, the

Figure 1: Example conversation in the Iris chat window in Artemis

2 RELATED WORK

Chatbots in education have evolved from simple keyword-based
models to sophisticated Al tools. Early chatbots, like ELIZA, laid the
groundwork over 50 years ago but could not consistently deliver
relevant responses [32]. Researchers have begun to embrace Al’s
potential, particularly through the advent of Intelligent Tutoring
Systems (ITS) [7]. While ITS have pioneered personalized learning
paths, they face constraints due to their dependence on narrow
data sets. This not only drives up development expenses but also
limits their usability [7].

Recent advancements in generative Al have revolutionized chat-
bots, making them more suitable for educational purposes [10].
The integration of Al in education, particularly chatbots, addresses
the challenge of low teacher-to-student ratios, offering immediate
feedback and personalized learning experiences [1, 4, 5, 9, 21-24].

The chatbot TeacherGAIA supports K-12 students outside the
classroom, providing cognitive and emotional guidance and show-
ing promise in facilitating self-directed learning [1]. EdTech com-
panies are also leveraging generative Al, with Quizlet introducing
Q-Chat and Khan Academy launching a GPT-4 based chatbot, both
aimed at assisting students in a supportive, non-directive manner
[17]. Chen et al. highlighted chatbots’ potential to provide respon-
sive, engaging, and confidential educational support through a
two-phase study involving undergraduates and an experimental
chatbot [5].

The study on CodeHelp showcased its effectiveness in offering
real-time programming assistance while preserving the learning
process’s integrity, gaining appreciation for its supportive and error-
resolving capabilities [20]. Students have to add the relevant source
code and the question to a web-based interface. Then, they will
receive tailored advice.

Liu et al. conducted a study at Harvard University’s CS50 course.
They introduced a GPT-4-based chatbot called "CS50 Duck", sim-
ulating a 1:1 teacher-student ratio and encouraging self-guided
problem-solving [22]. Their solution offers a chat interface in the
browser and in an IDE plugin. The plugin also allows for explana-
tions of highlighted code snippets.

Iris distinguishes itself from these solutions in two ways. First,
Iris makes heavy use of system-provided context. Artemis augments
each request to Iris with, e.g., the exercise problem statement and
the code available in the student’s submission repository. Students
do not need to manually compose a comprehensive request with
all required information and can focus on the conversation instead.

Preprint — do not distribute.

Iris aims to reduce the cognitive load on the student and make the
interaction more seamless, accessible, and efficient.

Second, while CodeHelp utilizes filtering techniques to remove
solution code and the CS50 Duck steers the Al away from providing
complete solutions using system prompts, Iris is precisely engi-
neered to enhance cognitive development. It delivers subtle hints
and counter-questions to stimulate independent problem-solving.
This approach aligns with existing research advocating that tu-
toring should "provide for as much self-explanations as possible,
as much instructional explanation as necessary” [28]. Interactive
elicitation of explanations can lead to better learning outcomes [6].

3 IRIS IN ARTEMIS

Artemis is a learning management system that supports distribut-
ing digital learning materials and exercises, facilitating person-
alized learning experiences [14]. While it offers various exercise
types, Artemis is particularly well-suited for programming exer-
cises, which are the focus of this paper. Artemis provides features,
such as automated submission testing, that offer immediate feed-
back on the correctness of solutions [14]. However, Artemis cur-
rently lacks the ability to provide personalized, context-aware assis-
tance to students. This limitation is especially problematic in large
courses, where individualized support from human tutors is limited.
We designed Iris to be integrated within Artemis, enabling it to
offer students personalized assistance in programming exercises.
Iris is accessible to students via a chat interface within the web
application. Figure 1 shows an example conversation in the Iris
chat window.

3.1 Requirements

A set of requirements guided the development of Iris, ensuring it ef-
fectively supports students in their learning process. The following
is a list of essential requirements for Iris:

Calibrated Assistance: General-purpose bots like ChatGPT
typically provide complete solutions to student questions. This
behavior is a common concern regarding using LLMs in educa-
tional settings [12][2]. While these tools are designed to follow
instructions closely, revealing the solution without any student
contribution can negatively impact their learning outcome. Iris
should instead offer subtle hints or counter-questions to promote
independent problem-solving skills and cognitive development.

Context-Aware Assistance: Recent research suggests that the
programming assistance quality of LLMs can benefit from providing
more context, such as the current source code [29]. By analyzing

Iris: An Al-Driven Virtual Tutor For Computer Science Education

the current state of the code, considering the exercise problem state-
ment, and reading unit test feedback or build errors, Iris can offer
tailored advice that directly addresses the specific challenges faced
by the student. In contrast, general Al assistance tools like ChatGPT
lack this automated context awareness, limiting their ability to pro-
vide relevant and effective support without the student manually
providing the exercise problem statement, their code submission,
and other relevant data. This seamless integration allows students
to focus on asking questions and receiving assistance without the
added burden of dealing with a separate external tool.

Question Filtering: Iris should be programmed to reject off-
topic questions. It must distinguish between relevant academic
queries and inappropriate requests, focusing solely on providing
educational support. Iris should help students stay focused on their
study topic and refrain from answering general questions about
unrelated topics, saving computing resources and human time.

3.2 LLM Interaction Strategy

Iris employs Microsoft’s Guidance Library? to interact with the
LLM in multiple steps. Iris uses a Guidance template implementing
Chain-of-Thought-Prompting, defined as generating a series of
intermediate reasoning steps, which has been shown to significantly
improve the ability of LLMs to perform complex reasoning [31].
The following aspects of the template are worth noting:

Initial System Prompt: We assign a role to the model to con-
trol its behavior. Recent research has shown that this approach
is effective in enhancing the reasoning capabilities of LLMs com-
pared to zero-shot prompting [13][33] and even allows LLMs to
work towards a solution of complex tasks when collaborating in a
collaborative role-play setting [19]. Drawing inspiration from this
methodology, we define the role of an "excellent tutor" and outline
their specific actions, behaviors, and limitations in the context of
providing programming assistance. The following is an excerpt of
the prompt that defines the role:

You are an excellent tutor. An excellent tutor is a guide and an
educator. Your main goal is to teach students problem-solving
skills while they work on a programming exercise.

An excellent tutor never under any circumstances responds
with code, pseudocode, or implementations of concrete func-
tionalities.

An excellent tutor never under any circumstances tells instruc-
tions that contain concrete steps and implementation details.
Instead, he provides a single subtle clue, a counter-question,
or best practice to move the student’s attention to an aspect of
his problem or task so they can find a solution on their own.

An excellent tutor does not guess, so if you don’t know some-
thing, say "Sorry, I don’t know" and tell the student to ask a
human tutor.

Furthermore, to augment the capabilities of the LLM, the prompt
incorporates few-shot learning. Research by Brown et al. has shown

Zhttps://github.com/guidance-ai/guidance

Preprint — do not distribute.

that LLMs can achieve impressive results on diverse natural lan-
guage processing tasks without the need for fine-tuning by pro-
viding tasks and few-shot demonstrations solely through textual
interactions [3]. In general, few-shot learning involves providing a
few examples of the task and the expected behavior to the model,
thus enabling the LLM to rapidly adapt to new tasks with minimal
data input. For Iris, the prompt shows the LLM examples of the
type of questions it can expect from students alongside expected
answers. These examples enable the LLM to learn the task of pro-
viding programming assistance that balances the need for adequate
support with the requirement of calibrated assistance. We added
an example of a student asking for a complete solution to a pro-
gramming exercise. The expected answer is, "Sorry, but I cannot
provide a complete solution. I encourage you to try to solve the
task yourself. If you have any specific questions, I will be happy to
help you."

Chain-Of-Thought Processing: After the initial system prompt,
Iris uses the Guidance template to implement a Chain-of-Thought,
involving the following four central steps:

(1) Relevance Assessment: The LLM evaluates the relevance of
the student’s question using a numerical scale ranging from 1 to
10. If the assessed relevance score falls below 5, Iris generates a
generic response that asks the student to rephrase their question
and focus on the topic. Conversely, if the relevance score is
equal to or exceeds 5, the Iris proceeds to the subsequent step in
the interaction strategy. This early check allows Iris to optimize
its resources and avoid the additional burden of providing it
with context for irrelevant questions.

(2) File Selection: To provide the model with context from the
student’s code, an important step is the selection of code files
for analysis. Iris employs a file selection mechanism to opti-
mize the analysis’ efficiency and relevance. This mechanism
presents the LLM with a list of code files from the student’s
exercise repository and allows it to choose the files it deems
most relevant based on the chat history and the latest message.
Additionally, the model can optionally access the build log of
the latest student submission.

(3) Response Generation: The LLM generates a response to the
student’s question as the tutor role based on the selected context
files from the previous step, the exercise problem statement,
the feedback from automated tests, and the chat history.

(4) Post Generation Self-Check: GPT-3.5-Turbo tends to deviate
from the prescribed guideline of not providing model solutions,
despite being instructed not to do that [11][20]. Consequently,
we implemented a self-assessment check wherein Iris verifies
the adherence of its generated response to the predefined role
of an "excellent tutor." If the response fails to conform to the
rules, Iris refines the response or reduces the level of assistance
until it aligns with the desired criteria.

4 METHODOLOGY

This study revolves around the research questions (RQ1, RQ2, and
RQ3) formulated in Section 1. We conducted an online survey
among Iris’ users to gather feedback on their experiences and per-
ceptions regarding Iris’ impact. In this study, we do not aim to

https://github.com/guidance-ai/guidance

measure the actual impact of Iris on student performance or learn-
ing behavior but rather focus on students’ subjective perceptions
and experiences. Follow-up studies will investigate the impact of
Iris on student learning outcomes.

4.1 Survey Design

We asked the students to indicate their agreement with a series
of statements on a five-point Likert scale ranging from "strongly
agree" to "strongly disagree." These are the statements that relate
to each research question:

RQ1 Perceived Impact
Q1 Iris understands my queries well.
Q2 Iris provides assistance that directly helps me with the
issues I have while working on a programming exercise.
Q3 The guidance offered by Iris has improved my under-
standing of programming concepts.
Q4 Interacting with Iris makes the learning process more
engaging.
Q5 Ifeel more motivated to work on programming exercises
when using Iris.
RQ2 Preference of Iris Over Human Assistance
Q6 Ifeel comfortable asking Iris questions without worrying
about being judged.
Q7 I feel safe asking Iris questions that I wouldn’t have the
confidence to ask a tutor or professor.
Q8 Iprefer to ask questions to Iris instead of asking a human
tutor for help.
Q9 Iwould prefer to ask Iris questions about lecture content
instead of asking the professor.
RQ3 Reliance
Q10 I would find it more challenging to solve programming
exercises without Iris.
Q11 I find it difficult to solve the tasks in computer-based
exams without Iris.

The survey included additional questions specifically aimed at
students who were aware of Iris but had yet to use it. These ques-
tions sought to understand the reasons behind their decision.

4.2 Data Collection

We surveyed students enrolled in three distinct CS1-level courses
at the Technical University of Munich. These introductory courses
aim to provide first-semester students of different study programs
with programming fundamentals. Table 1 provides an overview of
the number of exercises with Iris enabled (nx), students enrolled
(nst), students who engaged with Iris at least ten times (njys),
conversations started with Iris (n.) and messages sent to Iris in
total (n,).

Table 1: Overview of courses

Study Program Nex Nst Nlris ne Nm
Management & Tech. 50 403 136 1629 7562
Informatics 64 1141 72 1063 3430

Information Engineering 10 111 13 109 408

Preprint — do not distribute.

Patrick Bassner, Eduard Frankford, and Stephan Krusche

We conducted the survey using LimeSurvey?, an open-source
survey application. It was distributed to students via email and was
open for a period of ten days.

4.3 Data Analysis

We chose a quantitative approach for the analysis of the survey data.
The data cleansing process involved filtering responses to ensure
completeness for questions Q1 to Q11. Additionally, participants
were filtered based on the number of messages sent, with only
responses from students who had sent a minimum of ten messages
being included to ensure the evaluation of Iris’ effectiveness is based
on informed judgments. Finally, 26% of the initial sample remained
for further analysis.

221 students engaged with Iris by sending at least ten messages.
Of these students, 121 successfully participated in the survey, re-
sulting in a relative response rate of 55%. It is important to note
that human tutors were available to all students in each course,
which may have contributed to lower usage rates of Iris. We em-
ployed a stacked bar chart as a visual representation to depict the
distribution of responses for each question.

5 RESULTS

In the following paragraphs, we present the results. The answers
to each question are visualized in Figure 2.

46% of students reported that Iris comprehends their inquiries
well, with 35% neutral and 19% disagreeing (Q1). For direct assis-
tance, 44% agreed, 28% were neutral, and 28% disagreed (Q2). The
enhancement of understanding in programming (Q3) received a
positive response, with 50% agreeing, 28% neutral, and 22% dis-
agreeing.

Responses varied more on engagement and motivation. 60%
found interactions with Iris engaging, with 14% disagreeing and
26% neutral (Q4). Motivation responses were evenly spread, with
37% agreeing, 40% neutral, and 23% disagreeing (Q5).

A significant 92% felt comfortable asking Iris questions without
judgment (Q6). 62% felt safe asking Iris sensitive questions, whereas
14% disagreed (Q7). For Q8, 35% agreed, 48% disagreed, and 17%
remained neutral. For Q9, 46% agreed, while 36% disagreed, and
18% were neutral.

Regarding the reliance on Iris, 43% believed it would be challeng-
ing to solve programming exercises without it, 32% were neutral,
and 24% disagreed (Q10). For computer-based exams, 27% thought
tasks would be difficult without Iris, 31% were neutral, and 41%
disagreed (Q11).

6 FINDINGS

The analysis of responses to RQ1 suggests a generally positive per-
ception of Iris’ ability to understand student queries and provide
assistance in resolving programming exercise issues. Most partici-
pants agreed that Iris understands their queries well and provides
helpful assistance, indicating effectiveness in its contextual under-
standing and feedback mechanisms. The response also indicates
that Iris has a notable impact on improving students’ understanding
of programming concepts. However, the relatively high percentage
of neutral responses suggests that while students perceive Iris as

Shttps://www.limesurvey.org

https://www.limesurvey.org

Iris: An Al-Driven Virtual Tutor For Computer Science Education

Strongly agree (2) Agree (1) Neutral (0) Disagree (-1) Bl Strongly disagree (-2)
Query Understanding (Ql):r 43.8% 34.7% 17.4% 1o
Helpful Assistance (Q2) 3= 40.5% 28.1% 24.8%
Conceptual Understanding (Q3) 42.1% 28.1% 17.4%
Improves Learning Engagement (Q4) A 43.8% 26.4% 10.7%
Increases Motivation (Q5) 1 28.9% 39.7% 17.4%
Non-Judgmental Comfort (Q6) 52.9% 38.8%
Safety in Asking (Q7) 28.1% 33.9% 24.0% 11.6%
Prefer Iris over tutor (Q8) 9.9% 24.8% 17.4% 33.9%
Prefer Iris over professor (Q9) 1 14.0% 31.4% 18.2% 27.3%
Tasks more challenging without Iris (Q10) 11.6% 31.4% 24.8% 23.1%
Exams difficult without Iris (Q11) {#5¥0% 22.3% 31.4% 24.0%
0% 10'% Zd% 36% 40I% 50% 60'% 70'% 86% 96% 106%

Figure 2: Stacked bar chart showing the distribution of responses for each question on a five-point Likert scale

helpful, there might be room for enhancing its capabilities to ensure
a more universally positive reception.

Regarding the engagement and motivational aspects of Iris, the
responses were generally positive, with a majority agreeing that
Iris makes the learning process more engaging. However, the moti-
vation to work on programming exercises with Iris received a more
balanced response, suggesting that while Iris contributes positively
to the learning experience, its influence on motivation varies among
students.

Main Findings for RQ1: Iris is perceived positively in
understanding student queries and providing relevant as-
sistance, contributing to an improved understanding of
programming concepts. It enhances the learning experi-
ence by making it more engaging, although its impact on
student motivation varies.

The responses to RQ2 reveal a strong level of comfort and safety
in asking Iris questions, indicating a significant level of trust in
the system, possibly due to the private and non-judgmental nature
of the Al interaction. However, the responses are more balanced
regarding preferring Iris over human support. While a notable
percentage of students prefer Iris for its accessibility and immediate
feedback, a more significant portion values interaction with human
tutors. This data suggests that while Iris is a valuable tool for certain
aspects of learning, students consider it a complement rather than
a replacement for human tutors. On the contrary, the responses to
Q9 indicate that students are more open to using Iris for lecture
content questions over asking the professor during the lecture. This
insight aligns with the comfort and safety aspect of Iris, as students
may feel more comfortable asking Iris questions during the lecture
than asking the professor directly in front of their peers.

Main Findings for RQ2: Students express high comfort
and safety in asking Iris questions. The preference for Iris
over human tutors is balanced, highlighting its role as a
complementary tool rather than a complete substitute for
humans. Students are more open to using Iris as a replace-
ment for asking questions in the lecture.

Preprint — do not distribute.

The responses to RQ3 show that a notable portion of students
agreed that not having access to Iris would make solving program-
ming exercises more challenging, indicating a certain level of re-
liance on Iris. However, a majority of students disagree or remain
neutral about a higher difficulty of solving exam tasks without
Iris. This suggests that while Iris is a welcome resource for routine
exercise-solving, students still feel confident that they can indepen-
dently solve programming assignments in exams. In the courses
covered in this evaluation, the instructors made students aware
ahead of time that Iris is not allowed during exams, which might
have influenced the responses to Q11 compared to Q10.

Main Findings for RQ3: There is a moderate level of
reliance on Iris for routine programming exercises, but the
reliance decreases in the context of exams. This indicates
that students see Iris as a helpful tool for practice, learning,
and homework. However, students appear confident in their
abilities to perform in exams without Iris.

7 DISCUSSION

Integrating Iris into Artemis has provided insightful lessons on the
implementation and impact of Al-driven virtual tutors in educa-
tional settings. Using a prompt to define the "excellent tutor” role
for Iris was a key element in shaping the chatbot’s behavior. This ap-
proach ensured that the Al provided calibrated assistance through
subtle hints and counter-questions, aligning with the educational
goal of fostering independent problem-solving.

The mixed-positive responses in perceived impact suggest that
the effectiveness of these prompts can be further optimized. Future
iterations could benefit from refining the role definition and the
Chain-of-Thought processes, including enhanced access to context.
The current approach of presenting the model with a list of files
to choose from is suboptimal, requiring the model to decide which
files to look into based on the file name. It could be enhanced by
building an embedding index of the files and their content and
providing the model with the exact portions of the code and the
problem statement relevant to the student’s question.

The reliance on Iris for routine tasks may have unintended conse-
quences on learning habits and critical thinking skills. Over-reliance
on Al assistance could lead to a lack of deep engagement with the

material or diminished problem-solving skills, as students might
opt for the path of least resistance rather than dealing with chal-
lenging concepts themselves. However, as the results suggest that
students feel less reliant on Iris in exam contexts, the AI's role as a
supplemental resource is well-established, and students know they
need to be able to solve tasks without Iris. However, this perception
may be influenced by the instructors informing students at the
beginning of the course that Iris will not be allowed during exams.
We recommend communicating the intended use and limitations
of Al tooling to students in advance to ensure they understand its
role in their learning process.

In the study, we selectively analyzed responses from students
who had engaged with the system through a minimum of ten mes-
sages based on the premise that a certain interaction threshold is
necessary for providing informed feedback. Although this criterion
may introduce a bias towards users demonstrating higher engage-
ment levels, it allowed us to gather insights from users who have
meaningfully integrated Iris into their learning journey. The data
reveals that the agreement rate on Q2 for students engaging less
than ten times was 9 percentage points lower than that of their
more engaged counterparts. This discrepancy shows the critical
role of sustained interaction in fully realizing the tool’s potential
and underscores the need for further research into optimizing initial
interactions with Iris.

While not a focus of this study, some students did not use Iris
at all. In their feedback, they indicated that they preferred using
other resources or tools for assistance or were already satisfied with
their current methods of learning and problem-solving and did not
require additional assistance. Artemis provides feedback through
automated test results, which may already provide sufficient as-
sistance for this group of students. Further research is needed to
explore how Iris might still offer unique value or complement ex-
isting methods, even for students who perceive no current need for
additional resources.

The selection of the language model used in Iris may have impli-
cations for the quality of support provided. This study employed
GPT-3.5-Turbo as a cost-effective solution. However, GPT-3.5-Turbo
lacks the advanced reasoning capabilities of more recent models
such as GPT-4 or GPT-4-Turbo. While it is worth exploring the
potential improvements, the ten times higher costs associated with
GPT-4-Turbo pose a practical limitation for large-scale educational
settings. The cost of providing Iris during the winter semester of
2023/2024 already amounted to a substantial sum of 1500 euros for
about 11,000 interactions.

While students tend to appreciate the assistance from Iris, the
varying degrees of reliance and the preference for human interac-
tion in specific contexts suggest that the highest quality Al may
only sometimes be necessary. An optimal solution might involve
a hybrid model, where cost-effective Al solutions handle routine
queries, supplemented by higher-quality Al or human intervention
for complex or sensitive issues, ensuring efficiency and privacy.

It is important to navigate ethical concerns, such as ensuring
data privacy and promoting equitable access, to maintain trust and
fairness in each student’s educational journey. Iris is free of charge
for students. This promotes inclusivity and eliminates any potential
barriers that may hinder students from seeking assistance from
Al tooling. This democratization of access to educational support

Preprint — do not distribute.

Patrick Bassner, Eduard Frankford, and Stephan Krusche

contributes to a more equitable learning environment where every
student has an equal opportunity to excel in their programming
exercises.

8 LIMITATIONS

In line with Runeson and Host’s categorization framework [30],
we recognize potential limitations impacting the internal, external,
and construct validity of this study:

Internal Validity: Self-reported survey data may introduce biases,
with perceptions potentially influenced by individual attitudes or
varying familiarity with programming concepts. Notably, perceived
effectiveness does not necessarily equate to objective effectiveness.
The result analysis focused on students who interacted with Iris
at least ten times. This approach may overlook the perspectives
of students who used the system less frequently, introducing a
potential selection bias.

External Validity: The findings, rooted in a specific educational
setting, may not be broadly applicable due to unique factors like
student demographics, course structure, and institutional policies.

Construct Validity: The survey questions meant to evaluate "per-
ceived effectiveness’ and "comfort with asking questions’ may not
capture the full range of what they aim to assess. Underlying factors
such as prior experiences or personal preferences, which are not
captured by the survey, might influence these perceptions.

9 CONCLUSION

Students perceive Iris’ personalized and context-aware assistance
positively. Iris tends to aid in understanding programming con-
cepts and engaging learners, although its impact on the motivation
for programming exercises varies individually. While valued for
practice, students indicate that they confidently rely on their skills
for exams, suggesting a judicious use of the tool. Most surveyed
students trust and feel comfortable using Iris for queries but do not
view it as a complete replacement for human interaction. While
they value interactions with human tutors, they are more inclined
to discreetly ask questions using Iris during lectures.

Future research should deepen the evaluation of Iris’ context
awareness by contrasting Iris with general-purpose Al tools like
ChatGPT in a controlled experimental setting. This experiment
should involve three distinct groups of students: a control group
not using any Al tools, a group using Iris, and a group using a
general-purpose Al tool. Pre- and post-tests should be conducted to
quantitatively assess the impact on learning outcomes. Further anal-
ysis should assess the number of rejected questions and the number
of actually valuable responses, providing insights into the question
filtering mechanism’s effectiveness and Iris’ response quality. More-
over, future studies should explore the factors that deter student
engagement with Iris and develop further strategies to enhance the
learning experience with Iris.

Exploring the integration of different LLMs like GPT-4-Turbo, a
fine-tuned GPT-3.5-Turbo, or open source models such as Llamaz2
could provide insights into the trade-offs between quality, data
privacy, and cost. Enhancing Iris’” integration with student code is
crucial as well. Rather than selecting files by name, developing an
embedding index for file content will enable Iris to access and use
precise code segments and related parts of the problem statements.

Iris: An Al-Driven Virtual Tutor For Computer Science Education

REFERENCES

(1]

[4

fla

(5

=

=

[10]

[11]

[12

[14]

[15

[16

Farhan Ali, Doris Choy, Shanti Divaharan, Hui Yong Tay, and Wenli Chen. 2023.
Supporting self-directed learning and self-assessment using TeacherGAIA, a
generative Al chatbot application: Learning approaches and prompt engineering.
Learning: Research and Practice 9, 2 (2023), 135-147.

Brett A. Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2023. Programming Is Hard - Or at Least It
Used to Be: Educational Opportunities and Challenges of AT Code Generation. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education.
ACM, 500-506. https://doi.org/10.1145/3545945.3569759

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In
Proceedings of the 34th International Conference on Neural Information Processing
Systems. Curran Associates Inc.

Cassie Chen Cao, Zijian Ding, Jionghao Lin, and Frank Hopfgartner. 2023. AL
Chatbots as Multi-Role Pedagogical Agents: Transforming Engagement in CS Ed-
ucation. ArXiv abs/2308.03992 (2023). https://api.semanticscholar.org/CorpusID:
260704621

Yu Chen, Scott Jensen, Leslie J. Albert, Sambhav Gupta, and Terri Lee. 2022. Arti-
ficial Intelligence (AI) Student Assistants in the Classroom: Designing Chatbots
to Support Student Success. Information Systems Frontiers 25, 1 (2022), 161-182.
https://doi.org/10.1007/s10796-022-10291-4

Min Chi, Pamela Jordan, Kurt Vanlehn, and Diane Litman. 2009. To Elicit Or
To Tell: Does It Matter?. In International Conference on Artificial Intelligence in
Education. 197-204. https://doi.org/10.3233/978-1-60750-028-5-197

Tyne Crow, Andrew Luxton-Reilly, and Burkhard Wuensche. 2018. Intelligent
tutoring systems for programming education: a systematic review. In Proceedings
of the 20th Australasian Computing Education Conference. ACM, 53-62. https:
//doi.org/10.1145/3160489.3160492

Massimiliano Dibitonto, Katarzyna Leszczynska, Federica Tazzi, and Carlo M.
Medaglia. 2018. Chatbot in a Campus Environment: Design of LiSA, a Virtual
Assistant to Help Students in Their University Life. In Human-Computer Inter-
action. Interaction Technologies, Masaaki Kurosu (Ed.). Springer International
Publishing, 103-116.

Eduard Frankford, Clemens Sauerwein, Patrick Bassner, Stephan Krusche, and
Ruth Breu. 2024. Al-Tutoring in Software Engineering Education. In 46th Inter-
national Conference on Software Engineering: Software Engineering Education and
Training, ICSE (SEET). IEEE/ACM.

Luke K. Fryer, Kaori Nakao, and Andrew Thompson. 2019. Chatbot learning
partners: Connecting learning experiences, interest and competence. Computers
in Human Behavior 93 (2019), 279-289. https://doi.org/10.1016/j.chb.2018.12.023
Arto Hellas, Juho Leinonen, Sami Sarsa, Charles Koutcheme, Lilja Kujanpa4, and
Juha Sorva. 2023. Exploring the Responses of Large Language Models to Beginner
Programmers’ Help Requests. In Proceedings of the Conference on International
Computing Education Research. ACM. https://doi.org/10.1145/3568813.3600139
Enkelejda Kasneci, Kathrin Sessler, Stefan Kiichemann, Maria Bannert, Daryna
Dementieva, Frank Fischer, Urs Gasser, Georg Groh, Stephan Giinnemann,
Eyke Hiillermeier, Stephan Krusche, Gitta Kutyniok, Tilman Michaeli, Clau-
dia Nerdel, Jirgen Pfeffer, Oleksandra Poquet, Michael Sailer, Albrecht Schmidt,
Tina Seidel, Matthias Stadler, Jochen Weller, Jochen Kuhn, and Gjergji Kasneci.
2023. ChatGPT for good? On opportunities and challenges of large language
models for education. Learning and Individual Differences 103 (2023), 102274.
https://doi.org/10.1016/.lindif.2023.102274

Aobo Kong, Shiwan Zhao, Hao Chen, Qicheng Li, Yong Qin, Ruigi Sun, and
Xin Zhou. 2023. Better Zero-Shot Reasoning with Role-Play Prompting.
arXiv:2308.07702

Stephan Krusche and Andreas Seitz. 2018. Artemis: An Automatic Assessment
Management System for Interactive Learning. In Proceedings of the 49th Technical
Symposium on Computer Science Education (SIGCSE). ACM, 284-289.

Stephan Krusche, Andreas Seitz, Jiirgen Bérstler, and Bernd Bruegge. 2017. In-
teractive Learning: Increasing Student Participation Through Shorter Exercise
Cycles. In Proceedings of the 19th Australasian Computing Education Conference.
ACM, 17-26.

Stephan Krusche, Nadine von Frankenberg, Lara Marie Reimer, and Bernd
Bruegge. 2020. An interactive learning method to engage students in modeling.
In 42nd International Conference on Software Engineering, Software Engineering
Education and Training. ACM, 12-22.

Preprint — do not distribute.

(17

(18]

(19]

[20]

[21

[22

[23

™
=)

[25

[26]

(28]

[29

(32]

(33]

Nir Kshetri. 2023. The Economics of Generative Artificial Intelligence in the
Academic Industry. Computer 56, 8 (2023), 77-83. https://doi.org/10.1109/MC.
2023.3278089

Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein, Joanne

Kim, Andrew Tran, and Arto Hellas. 2023. Comparing Code Explanations Created
by Students and Large Language Models. In Proceedings of the Conference on

Innovation and Technology in Computer Science Education. ACM, 124-130. https:
//doi.org/10.1145/3587102.3588785

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard
Ghanem. 2023. CAMEL: Communicative Agents for "Mind" Exploration of
Large Language Model Society. In Advances in Neural Information Processing
Systems, Vol. 36. Curran Associates, Inc., 51991-52008.

Mark Liffiton, Brad E Sheese, Jaromir Savelka, and Paul Denny. 2024. Code-
Help: Using Large Language Models with Guardrails for Scalable Support in
Programming Classes. In Proceedings of the 23rd Koli Calling International Con-
ference on Computing Education Research. ACM, Article 8, 11 pages. https:
//doi.org/10.1145/3631802.3631830

Chen-Chung Liu, Mo-Gang Liao, Chia-Hui Chang, and Hung-Ming Lin. 2022.
An analysis of children’ interaction with an Al chatbot and its impact on their
interest in reading. Comput. Educ. 189, C (2022). https://doi.org/10.1016/j.
compedu.2022.104576

Rongxin Liu, Carter Zenke, Charlie Liu, Andrew Holmes, Patrick Thornton, and
David J. Malan. 2024. Teaching CS50 with AI: Leveraging Generative Artificial
Intelligence in Computer Science Education. In Proceedings of the 55th Techni-
cal Symposium on Computer Science Education. ACM. https://doi.org/10.1145/
3626253.3635427

Jesse G Meyer, Ryan] Urbanowicz, Patrick CN Martin, Karen O’Connor, Ruowang
Li, Pei-Chen Peng, Tiffani J Bright, Nicholas Tatonetti, Kyoung Jae Won, Gra-
ciela Gonzalez-Hernandez, et al. 2023. ChatGPT and large language models in
academia: opportunities and challenges. BioData Mining 16 (2023).

Chinedu Wilfred Okonkwo and Abejide Ade-Ibijola. 2021. Chatbots applications
in education: A systematic review. Computers and Education: Artificial Intelligence
2 (2021).

Neelkumar P. Patel, Devangi R. Parikh, Darshan A. Patel, and Ronak R. Patel. 2019.
Al and Web-Based Human-Like Interactive University Chatbot (UNIBOT). In 3rd
International conference on Electronics, Communication and Aerospace Technology.
148-150. https://doi.org/10.1109/ICECA.2019.8822176

James Prather, Paul Denny, Juho Leinonen, Brett A. Becker, Ibrahim Albluwi,
Michael E. Caspersen, Michelle Craig, Hieke Keuning, Natalie Kiesler, Tobias
Kohn, Andrew Luxton-Reilly, Stephen MacNeil, Andrew Petersen, Raymond
Pettit, Brent N. Reeves, and Jaromir Savelka. 2023. Transformed by Transformers:
Navigating the AI Coding Revolution for Computing Education: An ITiCSE
Working Group Conducted by Humans. In Proceedings of the Conference on
Innovation and Technology in Computer Science Education (Turku, Finland). ACM,
561-562. https://doi.org/10.1145/3587103.3594206

Bhavika R. Ranoliya, Nidhi Raghuwanshi, and Sanjay Singh. 2017. Chatbot for
university related FAQs. In International Conference on Advances in Computing,
Communications and Informatics. 1525-1530. https://doi.org/10.1109/ICACCL
2017.8126057

A. Renkl. 1999. Learning mathematics from worked-out examples: Analyzing
and fostering self-explanations. European Journal of Psychology of Education 14
(1999), 477-488. https://doi.org/10.1007/BF03172974

Steven I. Ross, Fernando Martinez, Stephanie Houde, Michael Muller, and Justin D.
Weisz. 2023. The Programmer’s Assistant: Conversational Interaction with a
Large Language Model for Software Development. In Proceedings of the 28th
International Conference on Intelligent User Interfaces. ACM. https://doi.org/10.
1145/3581641.3584037

Per Runeson and Martin Hést. 2009. Guidelines for conducting and reporting
case study research in software engineering. Empirical Software Engineering 14,
2 (2009), 131-164.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei
Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. 2024. Chain-of-thought prompting
elicits reasoning in large language models. In Proceedings of the 36th International
Conference on Neural Information Processing Systems. Curran Associates Inc.
Joseph Weizenbaum. 1966. ELIZA—a computer program for the study of natural
language communication between man and machine. Commun. ACM 9, 1 (1966),
36-45.

Ning Wu, Ming Gong, Linjun Shou, Shining Liang, and Daxin Jiang. 2023. Large
Language Models are Diverse Role-Players for Summarization Evaluation. In
Natural Language Processing and Chinese Computing: 12th National CCF Confer-
ence, NLPCC 2023. Springer-Verlag, 695-707. https://doi.org/10.1007/978-3-031-
44693-1_54

https://doi.org/10.1145/3545945.3569759
https://api.semanticscholar.org/CorpusID:260704621
https://api.semanticscholar.org/CorpusID:260704621
https://doi.org/10.1007/s10796-022-10291-4
https://doi.org/10.3233/978-1-60750-028-5-197
https://doi.org/10.1145/3160489.3160492
https://doi.org/10.1145/3160489.3160492
https://doi.org/10.1016/j.chb.2018.12.023
https://doi.org/10.1145/3568813.3600139
https://doi.org/10.1016/j.lindif.2023.102274
https://arxiv.org/abs/2308.07702
https://doi.org/10.1109/MC.2023.3278089
https://doi.org/10.1109/MC.2023.3278089
https://doi.org/10.1145/3587102.3588785
https://doi.org/10.1145/3587102.3588785
https://doi.org/10.1145/3631802.3631830
https://doi.org/10.1145/3631802.3631830
https://doi.org/10.1016/j.compedu.2022.104576
https://doi.org/10.1016/j.compedu.2022.104576
https://doi.org/10.1145/3626253.3635427
https://doi.org/10.1145/3626253.3635427
https://doi.org/10.1109/ICECA.2019.8822176
https://doi.org/10.1145/3587103.3594206
https://doi.org/10.1109/ICACCI.2017.8126057
https://doi.org/10.1109/ICACCI.2017.8126057
https://doi.org/10.1007/BF03172974
https://doi.org/10.1145/3581641.3584037
https://doi.org/10.1145/3581641.3584037
https://doi.org/10.1007/978-3-031-44693-1_54
https://doi.org/10.1007/978-3-031-44693-1_54

	Abstract
	1 Introduction
	2 Related Work
	3 Iris in Artemis
	3.1 Requirements
	3.2 LLM Interaction Strategy

	4 Methodology
	4.1 Survey Design
	4.2 Data Collection
	4.3 Data Analysis

	5 Results
	6 Findings
	7 Discussion
	8 Limitations
	9 Conclusion
	References

